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Abstract

This thesis compared the Response Surface Methodology (RSM) approach to the one-

factor-at-a-time approach for calibrating the Bioplume II finite-difference simulation model

of groundwater flow, contaminant transport and biodegradation. The MADE-2 data set of

hydrocarbon injection into pristine groundwater at Columbus Air Force Base, Mississippi was

used in this research. Because the simulation includes both groundwater flow and contaminant

transport, each calibration included both phases. The one-factor-at-a-time approach reduced

the root-mean-squared (RMS) error criterion for the flow to 0.921225 feet in a total of 36 runs

of Bioplume. The RSM approach reduced the error criterion to 0.918875 feet in a total of 47

runs. The one-factor-at-a-time approach was unable to reduce the RMS error criterion for the

transport calibration below an initial value of 67.1831 parts per billion (ppb) benzene after 21

runs which spanned the feasible range of each of the parameters. The RSM approach was able

to reduce the response to 67.0327 ppb after 47 runs of Bioplume. The RSM approach allows

the modeler to identify parametric regions of improved response in a systematic way that

would be extremely difficult to find using the one-factor-at-a-time approach. For this reason

it may be very useful for calibration of Bioplume models to be used for research or long

term monitoring of a contaminated site, where extra prediction accuracy may be needed. The

major limitations of this work were the use of inefficient full factorial designs for the Response

Surface Methodology approach and the limited improvement possible on the response surfaces

possibly due to the assumption of homogeneous parameter values.

x



A COMPARISON OF RESPONSE SURFACE METHODOLOGY AND A

ONE-FACTOR-AT-A-TIME APPROACH AS CALIBRATION

TECHNIQUES FOR THE BIOPLUME-II SIMULATION MODEL OF

CONTAMINANT BIODEGRADATION

L Introduction

1.1 Motivation for Research

Groundwater simulation models are currently used to predict the effectiveness of various

remediation schemes or the potential environmental and health threats posed by plumes of

groundwater contamination. These models require parameter estimates and initial conditions

in the form of field data before they can predict the future state vectors of groundwater

hydrology and contaminant distribution. Groundwater models run with poor estimates of

parameter values may result in inaccurate predictions of aquifer behavior, which may lead to

counterproductive management decisions, wasted time and money, and even environmental

and health consequences.

These problems might be avoided if the models used were better calibrated. Groundwa-

ter model calibration is a procedure for selecting parameter values which result in acceptable

prediction accuracy. Professionals might be more willing to spend time on calibration if

systematic and effective procedures were outlined for model calibration.

Response Surface Methodology (RSM) has been proposed as a calibration technique

for groundwater contamination models (1) (19). RSM has not been compared to any other

technique to determine whether it may represent a real improvement in terms of how many

runs might be required for the method to converge or how closely it may calibrate a model.
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1.2 Research Objectives

The goal of this research was to compare the Response Surface Methodology approach

to the one-factor-at-a-time approach for calibrating the Bioplume II simulation model. This

research was accomplished using the MADE-2 data from a natural gradient tracer experiment at

Columbus Air Force Base, Mississippi (51). The measures used to compare the two calibration

techniques were ease of use, number of runs required until improvement in response slowed

significantly, and the best response found using each method.
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II. Literature Review: The Inverse Problem

In general, simulation modeling involves the prediction of outcomes from a system.

Many models may be formulated mathematically as:

Xt f(Xo,0a)

where X, is the future state vector of the system, X is a vector representing the current state

of the system and 0 is a vector representing system parameters. How accurately the model

predicts future states of the system is a function of the parameter set chosen to run the model.

In groundwater modeling, as in many disciplines, direct measurement of parameter values

may be difficult, expensive, or even impossible.

The problem of parameter estimation is the inverse problem of mathematics, where the

parameter vector is solved for as the unknown. The inverse problem is often ill-posed in the

sense that it does not lead to unique solutions and is unstable because small measurement

errors result in large errors in parameter estimates (63:95). The nonuniqueness of the solution

suggests that parameter sets that do not represent actual environmental parameter values may

lead to successful calibration and even predict system response.

Anderson and Woessner (2:8) define calibration as the process of adjusting parameter

values until model predictions match field data. This process involves minimizing the differ-

ence between the predicted final state of the system and the actual final state. This process

requires the use of a historical data set, i.e. one which includes initial and final conditions

for the site under consideration. Future states of the same system may be predicted after

calibration has been completed. For example if data exists for years one and two, then the

model may be calibrated using year one data as the initial condition and year two data as

the final condition. Modeled values of year two data could then be compared to actual year

two data and the difference between the two reduced via alteration of the input parameters.
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Once this error has been minimized, the state of the system at year three may be predicted. In

groundwater modeling, calibration is also called history matching.

A variety of solution techniques have been developed, including trial and error, direct

methods, indirect methods, and the geostatistical approach.

2.1 Trial and Error

The trial and error approach is the most common technique in practice (16:199). This

technique starts with an approximation of the parameter values as either fixed or spatially vary-

ing. The approximations may come from field measurements, literature values or experience.

Bair and others (7:887-888) assumed literature values of effective porosity and then used trial

and error adjustments for hydraulic conductivity. Rifai and others (47:1021-1023) performed

calibration on the Bioplume II groundwater simulation model assuming constant hydraulic

conductivity and recharge, obtaining aquifer thickness from well logs, and estimating the

reaeration from the literature.

Trial and error is probably the dominant method due to its mathematical simplicity, but

it may not be the best method overall. Keidser and Rosjberg (32:2219) note that the skill of

the modeler plays a major role in efficiency and effectiveness of this method. Carrera and

Neuman (16:199) note the method is time consuming and subjective.

2.2 Direct Methods

Yeh (63:96) defines the direct method (as classified by Neuman) or the equation error

criterion (as classified by Chavent) to be the direct solution of flow and transport equations for

parameters using measured and/or estimated data such as heads and concentrations. Willis and

Yeh (57:352) state that this approach involves an explicit solution to an inverse boundary value

problem where the parameter vector is treated as a dependent variable. Wise and Charbeneau

(60:429) demonstrate the use of a direct semianalytical method to calculate parameter values

based on field data. Butcher and Gauthier (14:73) applied a direct analytical solution to the

inverse boundary value problem of determining the source geometry of a non-aqueous phase
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layer. Statistical methods and iterative approaches may be coupled with direct methods, but

in general the direct methods are characterized by their explicit solutions and lack of iterative

technique. Their disadvantage is that the cumbersome mathematics behind the direct methods

makes them awkward for solving complex problems.

2.3 Indirect Methods

Indirect methods, also called Output Error Criterion methods by Chavent refer to an

iterative minimization of a norm of observed versus calculated data in order to approximate

model parameters (63:96). Trial and error may be classified as an indirect method because

it involves this successive approximation approach. Most indirect methods have an error

criterion by which the goodness-of-fit of the parameter estimation is judged. Anderson and

Woessner (2:238-241) describe three calibration criteria for matching simulated to observed

groundwater head values: Mean Error (ME), Mean Absolute Error (MAE), and Root Mean

Squared Error (RMS). The Mean Error is the average difference between simulated and

observed values at data points (well nodes). Mean Absolute Error is average absolute value

of the difference between simulated and observed values. Root Mean Squared Error is the

square root of the average squared difference between simulated and observed values of head.

The criteria are as shown in equations 1, 2, and 3 where n is the number of observation or

well nodes, and the subscripts o and s represent observed and simulated values, respectively.

1 n
ME = - (h- )i (1)

MAE -- E1  (ho - h)il (2)
n i=1

RMS = - Z(ho - h,)? (3)
n=

A response surface can be formed by the functional relationship between the parameter

values and the error criterion selected. A relationship of the form Y = f(0) would then

be developed, where 0 is a vector of parameter values and Y is the response function.
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Identification of an acceptable parameter vector is performed by moving along the response

surface looking for an optimal response value.

A variety of methods have been developed to identify local minima. Devlin (25:327)

demonstrated that Simplex optimization may be used to identify local mimina of a response

surface in order to estimate parameter values. Yeh and others (62:35) developed an iterative

(indirect) parameter estimation routine involving two steps: (1) cokriging to estimate unknown

parameter values and (2) steady-state simulation modeling with observed heads as constant,

boundary values. Doughty and others (26:1741) developed an indirect technique to solve

the inverse problem based on the use of fractals. Carrera and Neuman (17:218) describe a

method to calculate optimal gradients to employ in the iterative method using a finite element

approximation of the gradient of a least squares criterion including a head residual and a

penalty function. Olsthoorn (42:44) proposed an indirect method to estimate parameter values

by generating log parameter vectors, running the model, computing the error criterion, a

jacobian matrix, and a gradient vector of the error criterion. The algorithm iteratively updates

the parameter vector after each step. Freeze (27:751) noted that several statistical methods

may be used to support indirect solutions to the inverse problem including weighted least

squares estimation, bayesian estimation, and maximum likelihood estimation. Adams (1) and

Cottman (19) demonstrated that Response Surface Methodology may be used to solve the

inverse problem of flow model calibration by locating minima on a response surface using the

sum of squared error criterion.

2.4 Geostatistical Approach

The geostatistical approach involves kriging and cokriging to estimate parameter values.

Kriging is a statistical technique for optimal estimation of a spatially distributed parameter for

which some values have been measured at a discrete points (observation wells). Cokriging

is a related technique by which an unmeasured parameter's values are estimated from the

values of a measured parameter which is correlated to the parameter to be estimated (24:323).

Either of these techniques may be used to estimate parameter values from limited field data.
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These techniques may also be used to fill data gaps where needed in connection with another

calibration technique. Sun and others (52:90) used kriging to estimate parameters as contin-

uously varying via measured point values and the use of a covariance matrix. Keidser and

Rosjberg (32:2230-223 1) compared four approaches to solving the inverse problem: kriging

with prior data on response, kriging with zonation (establishing areas of constant parameter

value), kriging alone, and zonation alone. They found that kriging with zonation resulted

in the best model fit, except when data was scarce or there was large measurement error, in

which case zonation alone was best. Freeze and others (27:751) explained that geostatistical

approaches differ from other statistical methods to solve the inverse problem because they

view parameters as spatially stochastic. Carrera and Glosorio (15:281) concluded that indirect

statistical methods are superior to geostatistical methods.

2.5 Sensitivity Analysis

As stated earlier, the inverse problem is often unstable because small measurement errors

generally result in large errors in parameter estimates (63:95). Errors in parameter estimates

generally produce errors in predicted system response. Sensitivity analysis of parameter

estimates is essential to determine the effect of parameter uncertainty on model prediction.

Sensitivity coefficients are the partial derivatives of response (head error or concentra-

tion error) with respect to each of the model parameters. Willis and Yeh (57:376) describe

three methods of computing sensitivity coefficients: the influence coefficient method, the sen-

sitivity equation method, and the variational method. The influence coefficient method was

developed by Becker and Yeh (57:376) and involves altering parameter values and succes-

sively resolving the simulation model to observe the effect on model response. The sensitivity

equation method involves taking the partial derivatives of the flow and/or transport equations

with respect to each of the parameters and numerically solving for the sensitivity coefficients

(57:377). The variational method, developed by Jacquard and Jain, Carter and others, and

Sun and Yeh involves numerically estimating the coefficients using a triple integral over the

subdomain of each node (57:378).



Other formal approaches have been developed to analyze sensitivity without the use

of sensitivity coefficients. Keidser and Rosjberg (32:2219) suggest that if model parameters

are random variables then statistical estimation and inference may be performed to assess

reliability. Brooks and others (13:2996-2997) proposed a sensitivity analysis process for

groundwater modeling based on using a simplex approach to identify extreme cases of model

response based on variations in parameter values between feasible limits. Spear and others

(49:3161) developed a method of parametric sensitivity analysis involving monte carlo simu-

lation that allows variation of more than one parameter at a time. Yeh (63:103) cited Yeh and

Yoon, and Shah and others who noted parameter uncertainty may be measured as the norm of

the covariance matrix of estimated parameters.

2.6 Parameterization

Parameterization refers to the discretization of actual environmental variables into a

given number of model parameters. The parallel concept of zonation is the assignment

of zones of constant parameter value to model parameters. Carrera and Neuman (16:206)

note that too many zones may increase error in parameter estimates. As parameterization

increases system modeling error decreases, but parameter uncertainty increases (63:95). Sun

and others (52:89) noted that because overparameterization may increase the variance of

identified parameters, optimal parameterization is a balance between the error criterion (such

as the residual of least squares error) and parameter uncertainty (measured for example by the

covariance matrix of the estimated parameters).

Several approaches to parameterization have been developed. The simplest technique

is to establish lumped parameter values which ignore spatial variations and assume the entire

aquifer to be homogeneous (44:2). Yeh (63:98) explained that parameterization may be by

zonation, where parameter values are constant over each zone, or by interpolation, where

parameter values vary between nodes. In the finite element interpolation method (52:90)

the parameter varies continuously via the basis functions which apply between sets of nodal

values. In the stochastic inverse method (52:90) the parameter varies over a field via statistical

8



parameters and is estimated with the maximum likelihood approach combined with cokriging.

Sun and others (52:101) propose parameterizing the model in connection with the geological

characterization of the subsurface.

2.7 Summary

Extensive research has been completed on groundwater simulation model calibration.

The problem is that many of these techniques have not been evaluated for efficiency. If a

method is no more efficient than the trial and error approach, may not find support among

modelers. Response Surface Methodology provides an example. This technique has been

shown to work for calibration of groundwater simulation models (1) (19), but has not been

demonstrated for contamination models or compared to other techniques. This thesis will

evaluate the Response Surface Methodology to examine whether it may be more efficient or

more effective than the baseline: one-factor-at-a-time or trial and error approach.
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III. Background

3.1 Bioplume II

Bioplume II is a FORTRAN simulation model of the biodegradation of a contaminant in

groundwater. It was written by Dr. Hanadi Rifai (46) (47) of Rice University as an alteration

of the Method of Characteristics (MOC) finite difference model of fate and transport written by

Konikow and Bredehoeft (34) at the USGS. The model simulates steady state or transient flow

and both advective and dispersive transport, as well as both dissolved oxygen and hydrocarbon

plumes. At the end of each time step, Bioplume II simulates the reaction between the two

plumes using a mineralization ratio defined by the user. This approach differs from one where

biodegradation is modeled using a simple decay term. The model is a standard in the field

of environmental restoration and is commonly used to design remediation systems that utilize

natural attenuation or injection of oxygenated water (48:55).

Bioplume II requires an input file which includes all the data that the model needs to

simulate flow and transport. This input file contains values of constant and spatially varying

parameters, such as porosity and hydraulic conductivity, as well as initial concentrations of

oxygen and hydrocarbon contaminant. When Bioplume II is run, the system prints changing

values of plume concentrations and other data related to the modeled groundwater system.

Bioplume II requires two layers of calibration because there are two layers of simu-

lation. The hydraulic flow and the transport equations must both be considered. First a set

of flow parameters are adjusted until the predicted hydraulic heads match the expected heads

sufficiently. Second, a set of transport parameters are adjusted until the predicted concentra-

tions are close to the expected final concentrations. After both steps are accomplished the

calibration is complete.

3.2 Calibration Techniques

Two calibration techniques were compared in this thesis: a one-factor-at-a-time ap-

proach and the Response Surface Methodology (RSM) technique. The RSM technique in-

10



volves several procedures which can be used to locate the optimal response on an empirical

response surface. RSM will be evaluated by comparing the number of runs required for

calibration and the final degree of calibration via the Root mean Squared error criterion.

The one-factor-at-a-time approach involves improving on the response, or fit, by iteratively

changing one parameter at a time.

3.2.1 One Factor at a Time Calibration. The trial and error approach starts with

an educated guess at each of the parameter values and then the modeler manually alters the

parameters, one at a time, until an acceptable match, or fit, between the predicted and actual

final conditions is achieved. In practice, trial and error is not any one standard approach, but

the set of all manual iterative guessing calibration techniques. For the purposes of this work

the trial and error technique means the one-factor-at-a-time approach.

To implement this approach, the parameters are listed in the order in which they are to

be improved upon. Next the Bioplume II model is run at an initial parameter setting. The

response for this parameter set is the error criterion for that point. The first parameter is then

increased by a set amount, equal to the first significant digit (e.g. 32.7 would be increased to

42.7 or decreased to 22.7) and the model run again. If the initial parameter value is zero any

reasonable step size may be chosen.

If the response does not improve, the parameter is decreased by the set amount to test

in the other direction. If no improvement in response is found in either direction, then the

parameter should be multiplied and then divided by increasing powers of ten until either a

change in response is seen or the limit of a reasonable range for that parameter is reached.

When the parameter improves, it is altered again in the direction of improving response.

This process is continued until response stops improving. The last three settings make

two ranges which are then split in half. For example if the model was run for parameter x at

x = 1, x = 2 and x = 3 and improved between one and two, but error increased for three,

then the next step would be to split the two ranges and run the model at x = 1.5 and x = 2.5.

The better of these two responses is chosen for further exploration with the ranges being split

11



in half at each step. Whenever two responses are equal, the choice of which one to further

explore should be made randomly.

Once improvement in response ceases, the parameter is set at the last value for which

improvement had continued and the procedure is repeated for the next parameter. This

procedure is continued until the RMS response goes below some established cut off value. If

all parameters are improved without meeting a termination criterion, the modeler goes through

the list again beginning with the first parameter improved upon. If no improvement is seen

after going through the whole list of parameters then the method may be seen as stalled.

3.2.2 Response Surface Methodology. Response Surface Methodology (RSM) is a

technique for finding local optimal response values from an empirical model. The response in

this case is a function of the difference between the predicted and actual final condition. The

actual surface that RSM explores is the n-dimensional surface formed by assigning a response

value to each coordinate point (01, 02, ... , On), where 9i is the value of the ith factor. Note

that the value of this response surface could be determined at any point by running the model

using the parameter values corresponding to the coordinate (01, 02,... , On) and calculating

the error criterion for that run. This process allows the modeler to explore the surface at any

point without knowledge of the nature of the response function Y = f(k) itself. The RSM

technique allows the modeler to examine a series of local approximations of the surface and

move towards parameter regions of improved response. The method is based on the statistical

fields of regression, analysis of variance, and experimental design. The actual process of RSM

starts with a screening phase.

3.2.2.1 Screening Phase. The purpose of this phase is to determine which

parameters significantly influence the response of the system. This process may be especially

helpful when there are a large number of potential factors. Screening is generally accomplished

by conducting experiments according to a Plackett-Burman or 2 /- fractional factorial design,

but may be performed less efficiently with a two-level full-factorial, or 2 k, design. A two-

level full factorial design, for k factors contains every possible combination of the high and
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low settings for the k factors (01, 02,. . . , Ok). For example if two parameters were under

consideration, the model would be run at four different parameter combinations or coordinate

pairs (01, 02) because for k = 2, 2 k = 4.

For convenience and ease of analysis the parameter values are linearly transformed into

coded variables Xk:

Ok - Oko (4)
Sk

where 0ko is the value of 0 at the center of the design region and Sk is half the difference

between the high and low levels of Ok (the half-range of the region). The values of the coded

variables are + 1 for the high level and -1 for the low level.

The response values (error values from the experimental runs) are fit to a regression

equation in the k-coded variables with or without interaction terms. For a three factor case

the regression equation would be:

Y P +o ±31-lXl + / 2 x 2 + 0 3 X 3 + /31 2 X l X 2 + 0 13XlX 3 + 32 3 x 2 x 3 + P 1 2 3 X 1X 2 X 3 + ei (5)

Note that the error term in equation 5 is not random as is often the case with regression

equations. In this work the error term is constant because the model is deterministic. If the

same parameter set is used as input for Bioplume II in two different runs, the output will be

the same. That is not to say there is no error: the response surface is an error surface, but the

error is completely due to lack-of-fit. Therefore there is no pure error and the error surface is

not stochastic.

The regression equation of the error surface indicates which factors have the most

influence on the quality of the model calibration. Identification of these factors can be

accomplished using a stepwise regression procedure or a normal probability plot. Since the

deterministic nature of the data undermines the assumptions required by the standard t and F
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test statistics, care must be taken when determining factor importance. Those factors accepted

as influential are then considered in the first order design phase.

3.2.2.2 First-Order Design Phase. In the first order design phase, the

response surface is assumed to be locally linear. RSM uses two level factorial designs to

approximate the locally linear nature of the surface and a gradient search to locate a region

of improved response. The process of generating an experimental design, fitting a first-order

linear model, and conducting a gradient search continues until either the response is sufficiently

low or significant improvement in response is not seen with further iterations.

If the first-order design does not converge on an acceptably low error value, then a

second-order design may be needed. Refer to Box and Draper (12), for example, for more

information on the second-order phase.

14



IV Experimentation

4.1 Description

The evaluation of RSM as a calibration technique involved repeated calibration of the

Bioplume II model using both RSM and the one-factor-at-a-time baseline approach. The

calibration exercises involved:

1. Developing the Bioplume II input file from the data.

2. Developing Final Condition Grid from the data.

3. Performing a one-factor-at-a-time calibration on the simulation, documenting the num-

ber of runs required to complete the calibration, and recording the best response identi-

fied.

4. Performing an RSM calibration, documenting the number of runs, and recording the

best response identified.

5. Comparing the one-factor-at-a-time approach to RSM.

Cottman (19) and Adams (1) used the RSM approach to calibrate a groundwater flow

model. This work differs from that of Cottman and Adams in that the RSM calibration was

conducted in two stages and compared to a baseline. The two stage calibration refers to the

fact that two calibration surfaces exist: one for the flow calibration and the other for the

transport calibration.

The initial parameter values chosen for each phase of the calibration (i.e. flow or

transport) were selected from the feasible range of each of the parameters under consideration.

.The parameters under consideration for the flow calibration were the hydraulic conductivity,

the porosity, and the diffuse recharge rate. The parameters adjusted for transport calibration

were longitudinal dispersivity, ratio of longitudinal to transverse dispersivity, stoichiometric

ratio (for biotic reaction between oxygen and benzene), retardation factor and reaeration

coefficient.
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The actual calibration using either technique required the use of an error criterion. In

this work, the root mean square (RMS) criterion was selected because it was hoped that it

would yield a more linear response surface than that posed by the SSE criterion used by

Cottman (19).

4.1.1 Mathematical Setting of the Problem. The mathematical problem solved in

this research is the inverse problem of mathematics, discussed in chapter 2. Specifically, the

parameters for the Bioplume-II model are estimated using an empirical response function. The

error generated by estimating model parameters was minimized using both the one-factor-at-

a-time and RSM approaches.

The Root Mean Squared Error is a function of the difference between the simulated final

condition and the actual final condition (kriged from real data in this case). The simulated final

condition may be found for any combination of parameter values, 0 by running the simulation

model, Bioplume-II. The domain of the problem is the n + 1 dimensional space formed by the

n factors being calibrated and the error response. The boundaries of the domain are the range

of feasible values of each paramater found in the literature. The initial condition is provided

by field data from the MADE-2 site. The boundary conditions of the simulation model are

constant hydraulic heads based on field data: a first-order boundary condition.

To simplify the solution homogeneity was assumed for all factors that were calibrated.

Isotropy was assumed for all factors except dispersivity, which was dealt with in the calibration.

To the degree that these were poor assumptions, additional error was introduced.

4.2 Conduct

The experiment required construction of an input file, determination of a final condition

and both flow and transport calibration using the one-factor-at-a-time approach and the RSM

approach.
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4.2.1 Input File Preparation. The preparation of the input file involved obtaining

the MADE-2 data set, developing the finite difference grid, determining an acceptable time

step, and constructing the input file.

4.2.1.1 Data. The first step was to develop a Bioplume II input file from

the data provided by Dr. Stauffer on the MADE-2 site (51) (50). The data from the site

was measured in three dimensions. Bioplume-II simulates only two dimensions, however,

so some data had to be transformed via vertical averaging. The data set included hydraulic

conductivity, dissolved oxygen, contaminant concentrations, and water surface elevations.

Readings were available from June 1990 through September 1991. The input file represents

the condition at the site in June 1990. Bioplume was used to "predict" conditions in September

1991. These predicted values were then compared to the measured data from September 1991.

The precision of the measurements and the uncertainty in the data from the MADE-2 site are

not important in this research because the goal is to compare the two methods of calibrating

the model. If any conclusions were to be drawn from the field data itself, then the quality of

the data would be more important.

Only parts of the data were needed. The hydraulic conductivity was altered as one of

the calibration parameters, and was represented as a single homogeneous value. Because of

this simplification, a rough average value was all that was needed to represent that parameter.

This simplification would also lead to an increase in the minimum value of the error response.

This had profound implications for the comparison between the two methods because the

techniques were limited in how well they could calibrate the model. Because Bioplume II

has the capability to model injection of contaminants, initial plume data was not needed. The

initial water surface profile and dissolved oxygen values (50:89-96) were important, but before

they could be added to the input file, a finite difference grid had to be developed onto which

values could be placed.

4.2.1.2 Grid Design. The maximum grid size that Bioplume-II allows is 20

x 30 nodes. This size was chosen to increase the accuracy of the modeling; in general denser
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grids exhibit reduced error. Due to the size of the site, a 10 x 10 meter cell seemed appropriate,

but two factors complicated the grid spacing.

First, the extent of plume spreading was not as large as the site. After benzene was

selected as the contaminant to be modeled, the grid size was reduced in order to minimize the

size of the modeled region, while still capturing the entire benzene plume. Those water table

and dissolved oxygen data points outside the region of the benzene plume's maximum extent

were deleted and the remaining points were used to construct the data set with the Surfer (31)

software package.

The second factor was that the Surfer software used to approximate the values of

spatially varying groundwater variables (31) can only view the nodes as intersections on a

grid, not as cells of the type used by a finite difference model. To use Surfer the intersections

must be viewed as the centers of the finite difference nodes. Surfer then calculates the length

and width of the cells by dividing the total dimension by the number of internodal spaces. For

twenty nodes, Surfer uses twenty grid intersections and has nineteen internodal spaces. For

thirty nodes Surfer has twenty-nine internodal spaces.

The final length and width of the modeled region was set automatically by Surfer to the

range of well coordinates that were included after the data point reduction described above.

The total length was 391.1724 feet and the total width was 367.357 feet, with the injection well

at 196.144 feet by 81.1144 feet from the corner of the modeled region. The placement of the

well was based on the actual location of injection wells at the MADE-2 site (50). Therefore,

as shown below, the longitudinal length of the nodes was set to 13.49 feet and the transverse

dimension of the cells to 19.33 feet.

(367.357 meters) (3.28 ft/m)
19 spaces

(391.1724 meters)(3.28 ft/m)
29 spces =19.33 feet29 spaces
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The injection well was then placed at 11 nodes in the x-direction (196.14 . 11) and 2319.33

nodes in the y-direction (8
1.11

4 
, 7) from the comer of the modeled region."13.49

In order to ensure stability, the nodal discretization needed to be acceptably fine. A

maximum nodal length in the flow direction could be calculated via the cell Peclet Number

(Pe,) as:

Pet, advection _ vAy vAy Ay

dispersion DL aLV aL

where

Pe = Cell Peclet Number

v = Groundwater Velocity

Ay = Longitudinal Length of Cell

aL = Longitudinal Dispersivity

DL = Longitudinal Dispersion Coefficient

The cell Peclet number should be no more than two to ensure numerical stability (61:65).

As seen in equation 8 the node length in the direction of flow should be no more than twice

the longitudinal dispersivity.

Pec < 2 (6)

AY < 2  (7)
OaL

Ay < 2aL (8)
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Young and Boggs (64:11-15) estimated longitudinal dispersivity at the site to be between

10 and 42 meters. Mercado (39) suggested estimating longitudinal dispersivity, cL, as:

= 1( dd ) 2Ld (9)=2P2 P.g

where

Pag = Average Value of Permeability

dd = Standard Deviation of Permeability

Ld = Mean travel Distance

Boggs and others (10:3282) present permeability distributions for four core samples

from the MADE-2 site. They also note the tracer plume traveled about 280 meters in 594

days (10:3288). A value of 36.3 feet, calculated via equation 9, is within the range prescribed

by Young and Boggs (64:11-15) though at the low end of that range (10 meters = 32.8 feet).

That value is acceptable however because a smaller value of aL is more conservative in terms

of nodal discretization because it should lead to a finer grid. Keeping Ay below twice the

longitudinal dispersivity, the maximum longitudinal length of a node is 72.6 feet. This value

is safely above the value of 13.49 to be used in this work.

4.2.1.3 Time Step. The length of the time step also impacts numerical

stability. A shorter time step increases accuracy, but can increase computer time. A simple

equation can be used to calculate a maximum time step. For stability of the algorithm the value

of v, the Courant number, defined by v = Lt where v equals the velocity of groundwater,

should be no more than one (61:65). Solving for At in this equation yields:

At= vAy
V

Given that v < 1:
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At < AY
V

when Ay = 10 meters:

At < 10 meters
v

Velocity can be estimated from measured tracer plume movements of approximately

160 meters in 503 days and 280 meters in 594 days for rates of 0.318 and 0.471 meters per

day (10:3287-3288).

Therefore:

At < 10 meters
- 0.471 meters/day

At < 21.2 days (11)

The maximum time step should therefore be 21.2 days in order to maintain numerical

stability. Bioplume allows the modeler to set up multiple pumping periods which can each

have different length time steps. In order to model the injection, an initial pumping period

was needed which coincided with the injection time. Once the injection time was over, the

remaining time could be divided evenly into any convenient units. Since the injection took

two days, two one-day time steps were included in the first pumping period. The remaining

time was divided into five pumping periods of 92 one-day time steps each. These time steps

directed the computer to model the fifteen month period with time steps much smaller than

the 21.2 day maximum required for numerical stability.
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4.2.1.4 File Assembly. Surfer was used to set up the Bioplume-II input

file by estimating initial values of dissolved oxygen and water table elevation for each finite

difference node. Other characteristics of the initial site condition were set to specific values.

The transmissivity was set to 0.00226042 square feet per second based on an approximation

of the hydraulic conductivity from the data divided by 1.96 feet of depth. The 1.96 feet was

both the aquifer screening length and the modeled depth of the aquifer. Injection wells were

set to values given in Boggs (9:2-1). In most cases, the value for leakance, recharge of water

to the aquifer, was set to zero. At the upstream and downstream ends, however, the leakance

parameter was set to keep the heads constant for a first order boundary condition.

The hydraulic flow modeling was assumed to be steady state. To test this assumption,

Surfer was used to draw contour maps of the water table surface over the time period to be

modeled. The contour maps confirmed the acceptability of the steady state assumption. They

indicated that for the time period under consideration at the site, the hydraulic gradients did

not change significantly. For more information on the structure of the input file, refer to Rifai

(46). The initial input file is included as Appendix B.

4.2.2 Final Condition. To determine if the model was calibrated after a given run,

the output from that run was compared to the final condition given in the original data. To

facilitate this comparison, the Surfer software was used to estimate both the initial and final

water table elevation and contaminant concentration for each finite difference node. The RMS

error of the differences between the heads or concentrations over the entire finite difference

grid was calculated for a given run of Bioplume-II using the FORTRAN program listed in

Appendix D.

4.2.3 One-Factor-at-a-Time Approach. The one-factor-at-a-time calibration con-

sisted of two phases: the flow calibration and the transport calibration.

4.2.3.1 One-Factor-at-a-Time Flow Calibration. The first parameter varied,

chosen arbitrarily, was the transmissivity. Starting with the nominal value of 0.00226042
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mentioned in paragraph 4.2.1.4, the transmissivity was incrementally varied. The goal was to

minimize the error criterion by varying the value, within a reasonable range.

Table 1 shows the values used and the resulting error values. The range of transmis-

sivities considered was based on the feasible range of hydraulic conductivities in the United

States (56:8). Walton lists 0.001 ft per day through 10,000 ft per day as the range for hy-

draulic conductivity in the United States. The range for the transmissivity values was based

on the fact that transmissivity can be expressed as the product of aquifer depth and hydraulic

conductivity, as depicted in equation 14. The aquifer was modeled as 1.97 feet deep, which

was the depth of the screened portion of the injection well. Therefore the transmissivity was

1.97 times the hydraulic conductivity. Transmissivity variation was bounded between 2E-8

and 0.228 ft2/sec, as depicted in equations 14 and 15.

Run No. I Transmissivity (ft/sec) RMS flow

1 2.26042E-3 2.23746
2 3.26042E-3 2.23746
3 1.26042E-3 2.23746
4 2.26042E-2 2.23746
5 2.26042E-4 2.23746
6 2.26042E-1 2.23746
7 2.26042E-5 2.23746
8 2.26042E-6 2.23746
9 2.26042E-7 2.23746

10 2.26042E-8 2.23746

Table 1. Values of Transmissivity and RMS Error

T=Kb (12)

.01ft (I 86400secay ) (1.97ft) = 2 * 10_8 ft2/sec (13)
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10000ftday (1.97ft) = 0.228ft2/sec (14)day \86400sec]

Table 1 shows that increasing and decreasing the transmissivity by 1.OE-3 from its

initial value of 2.26042E-3 did not alter the error criterion for the flow calibration. The value

remained at 2.23746 feet, regardless of the value of the transmissivity parameter. Scaling

the transmissivity up and down by powers of ten also did not change the value of the error

criterion for the flow calibration.

The second parameter varied was porosity. Boggs and others describe the aquifer as

"sandy gravel and gravelly sand" (10:3282). Walton lists a range of reasonable permeabilities

for a sand and gravel aquifer as 0.20 through 0.35 (56:413). Boggs and others (10:3282) took

samples at the site and determined that the porosities at the site had either a mean of 0.30 with

a standard deviation of 0.07 or a mean of 0.32 with a standard deviation of 0.09. To include

a wide range of reasonable values the porosity calibration was bounded between 0.20 and

0.41. The results of the porosity calibration are shown in Table 2. These results show that the

variation of porosity within a reasonable range did not reduce the error criterion.

Run No. Porosity RMS flow

11 0.215 2.23746
12 0.410 2.23746

Table 2. Values of Porosity and RMS Error Criteria

The third parameter 'Varied was the recharge rate. There was no data available on a

reasonable range for the recharge rate, so the model was started with a few values to determine

which might yield a good initial value. Simulation time was used to determine a feasible

starting value for this parameter. To predict how much CPU time the simulation would require

for a given run, the number of particle moves required per time-step was recorded for several

runs. Any value more than approximately 50 moves was prohibitive in terms of time to run

and memory requirements. Therefore the recharge rate was changed from zero to 5E-7 feet

per second. Refer to the Bioplume II manual for more information on particles in Bioplume
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II (46:7-6). Table 3 shows the number of particle moves per time step required by Bioplume

II for several diffuse recharge rates as displayed by Bioplume II.

Diffuse Recharge in feet per second I Required Particle Moves Per Time Step 1 Estimated Run Time

5E-3 58086 300 days
5E-4 5809 30 days
5E-5 581 3 days
5E-7 7 1 hour

Table 3. Diffuse Recharge and Required Particle Moves

A somewhat arbitrary range of -1E-6 through 5E-6 was established, based on computer

limitations described above. Results of the calibration using diffuse recharge are shown in

Table 4. Note that recharge is negative discharge. The results are also displayed in graphical

form in Figure 1.

Run No.I Diffuse Discharge in feet per second RMS flow]

13 -5E-7 4.54487
14 5E-7 0.990886
15 1E-6 2.92961
16 7.5E-7 1.82458
17 2.5E-7 120544

Table 4. Diffuse Discharge and RMS Error Criteria

Clearly, the hydraulic heads are most sensitive to the recharge/discharge parameter when

compared to the other parameters studied. The discharge was set to 5E-7 feet per second,

and since all three flow parameters had already been tried, transmissivity was randomly

selected to be recalibrated. During the recalibration of transmissivity, its variation affected

response. These results are shown on Table 5 and displayed graphically in Figure 2. The best

transmissivity parameter value selected was 2.76042E-3 feet/second with an RMS value of

0.921225 feet.

Because the transmissivity recalibration did not bring the error criterion below a desired

cutoff value of 0.5 feet the calibration was continued. Porosity was randomly selected for
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Figure 1. RMS Error vs. Diffuse Discharge Rate

recalibration. The results of the porosity recalibration are shown in Table 6. Variation of

porosity once again did not affect the error criteria.

Because the range of reasonable porosity values does not permit expansion by a factor

of ten in either direction, recalibration on porosity was complete. Discharge was randomly

selected for recalibration by assigning ranges to each factor and using a random number

generator.

Run No. I Transmissivity (ft/sec) [RMS flow

18 3.26042E-3 0.990044
19 4.26042E-3 1.19303
20 3.76042E-3 1.09244
21 2.76042E-3 0.921225
22 2.51042E-3 0.928127
23 3.01042E-3 0.947168

Table 5. Recalibration on Transmissivity
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Run No. Porosity RMS flow

24 0.215 0.921225
25 0.410 0.921225

Table 6. Recalibration on Porosity

The discharge recalibration began with the current 5E-7 feet per second and moved a

step in both directions. Because no improvement was identified in the response an order of

magnitude jump would have been taken in both directions. Due to CPU time and memory

restrictions the jump could only be taken in the direction of smaller values. The largest value

used was 1E-6 feet per second.

The results of the discharge recalibration are shown in Table 7 and displayed graphically

in Figure 3. Even with this jump no improvement was found. Due to lack of progress the

one-factor-at-a-time flow calibration was determined to be completed at this point and the

transport calibration begun.
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Run No. Diffuse Discharge (ft/sec) I RMS flow

25 5E-7 0.921225
26 1E-6 2.11809
27 0.0 2.23746
28 5E-8 2.05905

Table 7. Recalibration on Discharge
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Figure 3. RMS Error vs. Discharge

With the completion of calibration by transmissivity, porosity and diffuse recharge, the

flow calibration was completed. In a total of 28 runs the RMS flow criteria was reduced to

0.921225 feet.

4.2.3.2 One-Factor-at-a-Time Transport Calibration. After the flow cali-

bration was completed, the transport calibration was begun. The first parameter varied was

the longitudinal dispersivity. Hess cites Young and Boggs (64:2012) who performed field

experiments on the MADE-2 site to approximate the longitudinal dispersivity to be between

10 and 42 meters (32.8 and 137.76 feet). Using these values as the reasonable range, the

28



calibration was continued. Table 8 presents the results, which show that the variation of

longitudinal dispersivity did not change the error criteria.

Run No. Longitudinal Dispersivity RMS transport

1 46.3 67.1831
2 32.8 67.1831
3 56.3 67.1831
4 137.76 67.1831

Table 8. Values of Longitudinal Dispersivity and RMS Error

The second parameter varied was the ratio of longitudinal to transverse dispersivity.

This value had been held at 0.4, but was then varied between the limits suggested in the

Bioplume manual (46:7-15) of 0.001 through 1.0. The results of calibration on this ratio are

shown in Table 9 and demonstrate that varying the value of transverse dispersivity did not

change the response of the model.

Run No. Ratio of Longitudinal to Transverse Dispersivity RMS transport

5 0.5 67.1831
6 0.3 67.1831
7 1.0 67.1831
8 0.04 67.1831
9 0.004 67.1831

Table 9. Ratio of Longitudinal to Transverse Dispersivity and RMS Error

The third parameter varied was the stoichiometric ratio for reaction between oxygen and

hydrocarbon under aerobic biodegradation. This value is the ratio of oxygen to carbon atoms

required for biodegradation of benzene. In the case of complete mineralization of benzene to

carbon dioxide and water, the ratio may be calculated exactly from the stoichiometric equation

for aerobic mineralization of benzene shown below (48:56). Note that fifteen oxygen atoms

are needed for every six carbon atoms. The stoichiometric ratio is therefore 15/6 or 2.5. The

value must be calibrated because full mineralization of the benzene may not occur over the

modeled time period. This value was varied between 2 and 4 based on the recommendation

of Dr. Rifai (45). The results of calibration on the stoichiometric ratio are shown in Table 10.
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Run No. Stoichiometric Ratio RMS transport

10 4.0 67.1831
11 2.0 67.1831

Table 10. Stoichiometric Ratio and RMS Error

The fourth parameter to be varied was the Retardation Factor. This factor represents

the delay in spreading of the contaminant plume caused by adhesion to the soil matrix and

is defined as shown in equation 17. The value of Ow, percent saturation, is unity in this

case because the simulation models the saturated zone. Simplification results in equation 19.

Before this point, the Retardation Factor was given a value of one. This assumption, in effect,

stated that KD, the distribution coefficient of the aquifer or PB, the bulk density of the solid

matrix, was zero.

pB KD

Rf = + o- (15)Ow

Rf 1 + pBKD (16)

KD = Rf - 1 (17)
PB

Stauffer and others (50:75) list a mean value of retardation of 1.20 for the site with

a standard deviation of 0.20. Arbitrarily taking plus or minus one standard deviation as

a reasonable range for the factor, retardation was allowed to vary between 1.00 and 1.40.

Because Bioplume treats retardation as a function of PB and KD this range had to be reflected

in their values. Bulk density was set to 1.77 grams per cubic centimeter, a mean value

from field data (50:5). Equation 19 was then solved for KD as shown in equation 20. This

equation was then used to find a range for the Distribution Coefficient given the range for the

Retardation Factor. The range selected for the Distribution Coefficient was [0.00, 0.22599]
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with units of cubic centimeters per gram. The results of the variation of retardation factor

were uninteresting. Five values of KD were tried with the same result for each run as shown

in Table 11.

Run No. Distribution Coefficient RMS transport

12 0.11299 67.1831
13 0.21299 67.1831
14 0.01299 67.1831
15 0.22599 67.1831
16 0.01299 67.1831

Table 11. Distribution Coefficient and RMS Error

The last transport calibration factor to be tried was the reaeration coefficient. Five

values of this factor were used as shown in Table 12.

Run No. Reaeration Coefficient 1 RMS transport

17 1.184E-3 67.1831
18 2.184E-3 67.1831
19 0.184E-3 67.1831
20 5E-3 67.1831
21 1.184E-4 67.1831

Table 12. Reaeration coefficient and RMS Error

Once again, variation of this factor did not lead to variation in the response. Each time

the model was run, the results were the same: RMS transport was 67.1831. Due to lack of

progress the one-factor-at-a-time flow calibration was determined completed, having made no

progress after 21 runs of the model.

4.2.4 RSM Approach. The second calibration procedure used was the Response

Surface Methodology technique. This procedure involved three distinct phases. The screening

phase is designed to determine if any factors are insignificant and may be eliminated from

further consideration. The first-order phase uses an empirical first-order regression model to

approximate the true response surface and find parameter combinations that lead to optimal
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response values. The final phase is the second-order phase in which second-order regression

models are used to improve the empirical model and find optimal parameter combinations.

4.2.4.1 RSM Flow Calibration. The RSM flow calibration consisted of the

three phases described above.

Screening Phase of RSM Flow Calibration. The screening design

included three factors: the transmissivity, porosity and diffuse discharge. A full factorial

design was used because of its simplicity. Eight runs (2') runs of Bioplume were used to

determine which factors, if any, could be excluded from the analysis.

These runs were performed at all possible combinations of high and low levels of the

range of each parameter. The levels are shown in Table 13. Due to the cost in terms of CPU

time and memory, the discharge could not be set with an absolute value higher than 1E-6.

Transmissivity settings above 0.0228 also caused problems with CPU time and memory. These

values were high enough, however, to provide a sufficient range for the screening design. The

results of the eight runs are shown in Table 14.

Factor Low-Level] High-Level
Transmissivity 2E-8 0.0228

Porosity 0.20 0.41
Discharge -1E-6 1E-6

Table 13. Levels of Flow Parameters

Once the runs were completed they were evaluated using regression. A stepwise

procedure adds and deletes one factor or interaction term at a time in the regression equation

to determine whether the term improves the fit of the regression. Only those terms significantly

improving the fit the are included at each step. This procedure was used to determine which

factors, including interactions, were worth keeping in the analysis. Since the Bioplume-II

model produces deterministic output, the statistical significance of the regression model or of

any individual factors was not meaningful. SAS was, however, still able to provide a least

squares model of the error response. The stepwise procedure approximated a parsimonious
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Run No. Transmissivity Porosity I Discharge 1 RMS flow

1 2E-8 0.20 -1E-6 27246.5
2 2E-8 0.20 1E-6 544968
3 2E-8 0.41 -1E-6 27246.5
4 2E-8 0.41 1E-6 544968
5 0.0228 0.20 -1E-6 2.22
6 0.0228 0.20 1E-6 1.81
7 0.0228 0.41 -1E-6 2.22
8 0.0228 0.41 1E-6 1.81

Table 14. Screening Design and RMS Error

model, using the coded, i.e. transformed, data rather than the actual parameter values. The

resulting regression model revealed that neither porosity nor any of the interaction terms that

included porosity were worth including in the calibration. The stepwise procedure from SAS

is shown in Appendix C-1.

First-Order Design Phase of RSM Flow Calibration. The First-Order

design phase of RSM was used with only the two significant factors from the screening design:

transmissivity and discharge. Given that a full factorial, 2 k design was used for these two

factors, four runs of Bioplume were needed for each design used. The high and low settings

for the first-order design phase differed from those of the screening phase. In the screening

phase, the settings spanned the range of reasonable values for the variable. In the first-order

design phase, they represented a range around the current setting. A range of ±80% of the

initial value was used (19:4-13). The results of the first run of the first-order design phase are

shown in Table 15.

Run No. [Transmissivity] Discharge RMS flow]

9 4.068756E-3 5E-8 2.11605
10 4.068756E-3 -5E-8 2.36023
11 4.52084E-4 5E-8 1.24133
12 4.52084E-4 -5E-8 3.37311

Table 15. First Run of the First-Order Design Phase and RMS Error
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These results were modeled in a first-order linear regression equation using SAS. The

regression output from SAS is shown in Appendix C-2. The SAS output shows that the fit

was poor, with an R2 value of 0.6139. In order to develop a more reliable model (that could

be trusted) the design size was reduced to ±40% of the factor's value. A centerpoint value of

8.401E-7 was randomly selected for discharge because a range around a value of zero could

not be based on a percentage. The results of runs from this design are shown in Table 16.

Run No. Transmissivity I Discharge [RMS flow

13 1.356252E-3 5.0406E-7 2.21077
14 1.356252E-3 1.176E-6 7.46751
15 3.164588E-3 5.0406E-7 0.967852
16 3.164588E-3 1.176E-6 2.21034

Table 16. Second Run of the First-Order Design Phase and RMS Error

These results were also fit to a first-order regression equation using SAS. The R2 value

was an improved 0.8398, but the F-ratio was 2.622. The F-test has no meaning here because

it is based on an assumed normal error distribution around each response value. Although the

response surface is an error surface, the error is deterministic and so the normal assumption

can not hold. The F-ratio is the amount of the total sum of squared response which is explained

by the model divided by that attributed to lack of fit. Therefore any value over 1.0 means more

of the sum of squares is explained by the model than is attributed to lack of fit. The higher the

F-ratio, the better the fit. The regression output is shown in Appendix C-3.

The second attempt to develop a significant model was the addition of a center point

to the 2 k design. This made for a total of five data points. The fifth data point is shown in

Table 17.

Run No. Transmissivity Discharge RMS flow

17 2.26042E-3 8.401E-7 2.21077

Table 17. Centerpoint of Previous Design and RMS Error
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The fifth data point did not improve the R2 value, but it did increase the F-ratio to 4.370.

This was thought to be acceptable for developing a gradient vector. The regression output is

shown in Appendix C-4. The coefficients of the regression equation were used to calculate the

elements of the gradient vector. The vector desired was the vector of steepest descent, which

is based on the additive inverses of each element. The elements had to first be normalized to

establish the unit gradient vector. Then the values were decoded because they were based on

the transformed coordinate system, where the center of the current design had coordinates of

(0,0).

The transformation followed equation 4, which was solved for Ok, as shown in equa-

tion 20. Note that Xk is the coefficient value, in coded units, from the regression equation.

Sk is the half range of the region in standard units and 0ko is the value of the parameter, in

standard units, at the center of the design region. The results are shown in Table 18.

Ok = XkSk + Oko (18)

Factor Regression Coefficient Normalized Coefficient Uncoded Value

Transmissivity -1.625022 -0.707154 1.6210E-3
Discharge 1.624807 0.707060 1.0777E-6

Table 18. Table of Calculations for Steepest Descent Gradient

The uncoded values, which were the elements of the uncoded steepest ascent gradient

vector, were then subtracted from the parameter values at the center of the design region.

The new coordinate represented a single step along the gradient vector. A new test at this

point revealed that the design region had been too large. The response at the unit step was

worse than before, when it was expected to to have generated an improved response. The new

response is shown in Table 19 as run number 18.

Using the same design, the step size was decreased in the direction of the gradient

vector. Instead of moving one unit vector in the gradient direction, a new test point was

established at 50% of the steepest descent gradient vector. This test point revealed a response
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of 0.941898 for flow calibration. This value was an improvement over the response at the

center of the first design, 2.21077 feet. Values at 40 and 60% of the unit step were taken to

determine whether the 50% step led to the best response along the gradient vector.

Run No. Step Number RMS Flow

17 Center of First Design 2.21077
19 4/10 1.16225
20 5/10 0.941898
21 6/10 1.01111
18 Unit Step 6.15908

Table 19. Table of RMS Flow Values along First Gradient Vector

1.1

0

.9

3.5 4 4.5 5 5.5 6 6.5
Step Number

Figure 4. Graph of RMS Flow Along Gradient Vector

Once the 50% step was chosen as the low point along the descent path a new design

was established. The first design, centered on the 50% step, that led to an F-ratio over two

was at ±5% of the parameter values. These results are shown in Table 20. It had an F-ratio

of 5.821 and an R2 value of 85.34%, see Appendix C-5 for the SAS output from this design.
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Run No. Transmissivity Discharge RMS flow

22 1.39E-3 2.86E-7 0.940928
23 1.39E-3 3.16E-7 1.01783
24 1.53E-3 2.86E-7 0.918875
25 1.53E-3 3.16E-7 0.942795

Table 20. Run of a 5% Design Centered on 5th Step

The next step was to calculate the steepest descent gradient from this point. Using

equation 20, the steepest descent gradient was calculated from the coefficients of the regression

equation. The results of these calculations are shown in Table 21.

The unit gradient step was not the first step used for the gradient search here because

the unit gradient step would have been beyond the feasible region for transmissivity. Instead,

in an attempt to explore the first-order design further, 10% steps were taken. Then step ten

was taken in the direction of the discharge component of the steepest descent gradient vector.

This tenth step is the gradient search subject to a constraint as outlined in Box and Draper

(12). The results of the Bioplume II runs are shown in Table 22. Note that the unit gradient

step was taken at step nine was the last step that could fit within the range of acceptable values

for transmissivity. See Figure 5 for a graph of the progress made along the gradient vector.

Factor Regression Coefficient Normalized Coefficient Uncoded Value

Transmissivity -0.024272 0.6936 1.51 1E-3
Discharge 0.025206 0.7203 3.118E-7

Table 21. Table of Calculations for Second Steepest Descent Gradient

Finally a 5% design around the ninth step along the last gradient vector was tried. This

design had results shown in Table 23. The SAS analysis of this first-order design showed an

F-ratio of 1.840 and the R2 value was only 0.6479. See Appendix C-6 for these results.

Second-Order Design Phase of RSM Flow Calibration. Because this

design was already so small, a second-order design was appropriate at this stage. Again the

reader should consult Box and Draper (12) for more information on second-order strategies.
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Run No. Step Number I SFlow

20 Center of Second Design 0.941898
26 1 0.941433
27 2 0.940855
28 3 0.940116
29 4 0.939734
30 5 0.939193
31 6 0.938374
32 7 0.936984
33 8 0.934117
34 9 0.925218
35 10 3.30866

Table 22. Table of RMS Flow Values along Second Gradient Vector

Run No. [Transmissivity I Discharge RMS flow

36 9.823E-5 1.9361E-8 0.925219
37 9.823E-5 2.1399E-8 0.977799
38 1.0857E-4 1.9361E-8 0.923916
39 1.0857E-4 2.1399E-8 0.925219

Table 23. Run of a 5% Design Centered on 9th Step

Four axial points were added at ±a along each of the two axes to develop a central composite

design. c was chosen to equal the fourth root of the number of factorial points in the full

factorial design, 1.414 in this case, as suggested by Auclair (5). The additional axial points

are shown in Table 24.

Run No. Transmissivity I Discharge [RMS flow

40 1.1071E-4 2.038E-8 0.919488
41 9.60885E-5 2.038E-8 0.958185
42 1.034E-4 2.1821E-8 0.954969
43 1.034E-4 1.8939E-8 0.919911

Table 24. Additional Points Centered on 9th Step
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Figure 5. Graph of RMS Flow Along Second Gradient Vector

All nine points in the design on the 9th step were then run through a second order model

in SAS. This model approximated the coefficients of equation 21; the SAS results are shown

in Appendix C-7 and include a canonical and a ridge analysis.

Y = /0 + fTT + DD + /TTT 2 + DDD 2 + PTDTD (19)

The canonical analysis shows a local minimum could exist at a transmissivity value of

-0.595968 (1.00319E-4 uncoded) and a discharge value of -1.689911 (1.8658E-8 uncoded).

This point was run through Bioplume for an RMS flow value of 0.918963 feet.

The ridge analysis used SAS to extrapolate out from the design region to find points

that would be good candidates for further exploration. The results of the ridge analysis are

shown in Appendix C-7. Four points along the predicted ridge were tested to see if a ridge of

decreasing response really existed and if the responses were better than at the stationary point

predicted by the canonical analysis. See Table 25 for results of the ridge analysis. Note that

the distance along the ridge given in the table is in coded units.
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Run No. Distance along Ridge [ Transmissivity (coded) Discharge (coded) FRMS flow

44 1 1.03696E-4 (0.057195) 2.13973E-8 (-0.998363) 0.942336
45 2 9.95182E-5 (-0.750829) 1.84911 (-1.853714) 0.918993
46 3 9.5795E-5 (-1.470982) 1.77157 (-2.614615) 0.919196
47 4 9.2159E-5 (-2.174265) 1.69587 (-3.357465) 0.919517

Table 25. Ridge Analysis for RSM Flow Calibration

Because the ridge analysis did not improve the response beyond the value of the

stationary point the calibration was stopped. The best response found during the ridge analysis

was 0.918993 feet at a transmissivity of 9.95182E-5 square feet/second and a discharge of

1.84911 feet/second.

The best response found was not actually at the stationary point, but at the corner of the

second of the first order designs. This value occurred at a transmissivity of 1.53E-3 square

feet per second and a discharge of 2.86E-7 feet per second. The root mean squared error

criterion at this point was 0.918875 feet, which was less than a ten thousandth of a foot lower

in response than the stationary point. If RSM had been halted at this point, then a superior

response would have been obtained using RSM in only 24 runs of the Bioplume-II model.

The RSM calibration was not terminated, however, because in exploring the capabilities of

the procedure the specific response at run number 24 was simply overlooked.

4.2.4.2 RSM Transport Calibration. For the transport calibration five factors

had to be considered. These were longitudinal dispersivity (aL), the ratio of transverse to

longitudinal dispersivity ( ), the stoichiometric ratio (F), the retardation factor (Rf), and the

Reaeration Coefficient (RC).

Screening Phase of RSM Transport Calibration. Using a full factorial

design, a screening phase was run for all the factors. This design included 2' = 32 runs at the

high and a low levels for each factor. These levels are shown in Table 26, and the results of

these runs are given in the SAS output in Appendix C-8.
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Factor Low High

az 32.8 137.46
0.001 1.0

at _

F (Stoichiometric Coefficient) 2.0 4.0
KD (Rf) 0'(1.00) 0.11299 (1.40)

Reaeration Coefficient 0 0.005

Table 26. Details of Screening Design Levels

Although the screening design suggested that the stoichiometric ratio and the retardation

factor had the least effect on the response, the response surface required special treatment.

Two of the 32 runs had response values below the 67.1831 that resulted from most of the

One-Factor calibration approach. These values were obtained only when the stoichiometric

ratio was set to a high value and the Reaeration coefficient was set to zero (uncoded).

Only two factors were considered for further calibration, the longitudinal dispersivity

and the ratio of transverse to longitudinal dispersivity. The stoichiometric ratio and the

reaeration coefficient were set to their high and low values respectively. Because of it's

apparently minimal impact on response, the retardation factor was set to the one, i.e. no

retardation.

First-Order Phase of RSM Transport Calibration. The starting location

selected for the first-order design coincided with the lowest response observed in the screening

phase. This point could not be used as the center of a new design, however, because it was

on the boundary of reasonable values of the parameters. Therefore, an arbitrary design was

chosen that included the minimum point as a corner. This choice meant setting the stochastic

ratio to 4.0 (+1 coded) and the reaeration coefficient to zero. The retardation factor was set

to zero (-1 coded) because this value led to the lowest response in the screening design. The

remaining two factors were then varied and the results were as shown in Table 27.

These responses were then fit to a first-order regression model using SAS. The output

is shown in Appendix C-9. These results show that a very poor fit was obtained.
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run No. L -i S r, STransport

33 123.714 0.001 67.1906
34 123.714 0.002 67.0921

35 137.46 0.001 67.0505
36 137.46 0.002 67.1115

Table 27. First-Order Design for RSM Transport Calibration

Second-Order Phase of RSM Transport Calibration. A second-order

design was next used to improve the calibration. Additional tests were made at 1.414 coded

units away from the design center along each axis. These coordinates would have rendered

some tests out of the feasible range of factor values. To avoid this problem, the readings were

taken at one coded unit along the axis when necessary. A face centered central composite

design would have been a more conventional choice for this design, but this unusual design

worked acceptably well. The center of the design was also included for a total of five additional

points. The results are shown in Table 28.

Run No. aL (coded) J _m (coded) RMS TransportCV T,

37 120.869 (-v'2) 0.0015 (0) 67.2464
38 137.46 (+1) 0.0015 (0) 67.0764
39 130.587 (0) 0.002207 (+v/-2) 67.0327
40 130.587 (0) 0.001 (-1) 67.0394
41 130.587 (0) 0.0015 (0) 67.0362

Table 28. Second-Order Design for RSM Transport Calibration

A ridge analysis was performed using the nine data points tested. The SAS output

is shown in Appendix C-10. The analysis predicted a ridge pointing in the direction of

decreasing longitudinal dispersivity and increasing transverse dispersivity. First the stationary

point identified by the canonical analysis was tested and then points were tested along the

predicted location of the ridge. As shown in Table 29, no change in response was identified.
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Run No.I units along ridge aZ (coded) (coded) IRMS Transport

42 Stationary Point 131.66 (0.155432) 0.00161 (0.220709) 67.1831
43 1 129.92 (-0.096925) 0.0021 (1.200923) 67.1831
44 2 128.27 (-0.336868) 0.0026 (2.202779) 67.1831

45 3 126.65 (-0.572427) 0.0031 (3.184661) 67.1831

46 4 125.041 (-0.806931) 0.0036 (4.161754) 67.1831
47 5 123.43 (-1.041017) 0.0041 (5.136951) 67.1831

Table 29. Ridge Analysis for RSM Transport Calibration

At this point the calibration was stopped due to the lack of sufficient improvement in

the response. The RSM transport phase took 47 runs and had a best response of 67.0327 parts

per billion, identified at aL = 130.587 and 21 = 0.002207.
atL

4.3 Summary

Table 30 summarizes the results of the two calibrations to allow for a comparison. It

can be seen that RSM took longer to converge, but always led to better results.

Method [ Best Result Total Runs Expected Runs

Flow Calibration
One-Factor 0.921225 36

RSM 0.918875 47 24-43
Transport Calibration

One-Factor 67.1831 21
RSM 67.0327 47 23

Table 30. Summary of Calibrations

Note the "Expected Runs" column lists the number of runs that would have been required

if efficient Plackett-Burman or Fractional Factorial designs had been used for the Screening

design. The range shown for RSM flow calibration (24-43 runs) reflects the fact that the best

value for this calibration was obtained on the 24th run. Since all runs after that were not as

good, the calibration could have been reasonably stopped at any time after that run.
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The fact that RSM took more runs than the one-factor-at-a-time approach in the flow

calibration may be partially because RSM was used in an exploratory manner. If the RSM flow

calibration had been halted when it surpassed the one-factor-at-a-time approach, only 19 runs

would have been required with efficient Plackett-Burman or Fractional Factorial Screening

designs.

The comparison for the transport calibration does not present the full picture either. The

one-factor-at-a-time approach made no progress at all. To take the time to find the a response

of 67.0327 feet using the one-factor-at-a-time approach would most likely have taken many

more runs than the RSM technique took. By finding an area of improved response on the

transport surface, RSM performed better than the one-factor-at-a-time approach.
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V Conclusions and Recommendations

5.1 Conclusions

The results were not impressive for either technique. This was likely caused by the

use of the homogeneity assumption for all environmental factors calibrated. The MADE-2

site is well known in the literature for its heterogeneity (50). This difference between the

simulated and actual conditions could prevent significant improvement in response regardless

of calibration technique.

The strength of RSM could have become more apparent if zonation had been used. A

zonated model would allow for significant improvement in response, but would have added

significantly to the number of factors involved in the calibration. The one-factor-at-a-time

approach would have been tedious to use for a zonated model. RSM would excel here due to

the use of the Screening phase and the application of efficient Plackett-Burman or Fractional

Factorial designs. RSM would save runs by calibrating only the most significant factors.

The major weakness of the one-factor-at-a-time approach demonstrated by this research

was its inability to take interactions between parameters into consideration during the calibra-

tion process. By varying one parameter at a time the method used a tunnel vision approach.

In effect, the approach can only turn at right angles while negotiating a response surface.

RSM improves on this approach by simultaneously varying every parameter to improve the

response. This gradient search approach allows RSM users to obtain a better sense of the

response surface and move in any direction to improve the response.

One difficulty with the use of RSM is that the modeler must have knowledge of some

statistical concepts beyond those of many engineers and hydrogeologists. A solution to this

problem is that when the modeler is not familiar with the material, another individual in the

organization possibly could be assigned to assist with the calibration. If this is not the case,

specialized training may be needed to enable modelers to use this approach.
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Another problem with the use of RSM is that a statistical software package may be

needed to take full advantage of the second-order techniques. Not every environmental

engineering organization has access to this type of software. However, the first-order and

some of the second-order techniques may be used with a spreadsheet or even a calculator.

They still have the advantage of varying more than one factor at a time and therefore take

interactions between parameters into consideration. Therefore, lack of access to an advanced

statistical software package does not limit the modeler to the one-factor-at-a-time approach.

RSM took longer to find the best response identified than the one-factor-at-a-time

approach. This was partly the result of the researcher's inexperience with the method. RSM

also took longer because it was not used in the most efficient way possible. Full factorial

designs were used all the way through the research because of their simplicity. If Plackett-

Burman or other fractional factorial designs had been used the number of runs would have

been reduced significantly.

RSM showed a strength in the calibration of the transport phase. The one-factor-at-

a-time approach was unable to make any progress after varying all five transport parameters

throughout a feasible range. In order to continue the calibration using this approach, a

new starting point would be selected and the parameters again varied. The problem is that

the areas of improved response were not easy to find. The traditional method would have

difficulty improving upon model response in this case. Without a systematic procedure to

vary one parameter with respect to the others, one-factor-at-a-time calibration is little more

than iterative guessing.

The greatest strength of RSM is in its ability to move over the response surface while

taking interactions between parameters into account. This strength allowed it to find a region

of improved response. In the transport case the improvement was roughly 0.1 ppb. Although

this improvement is small, it is real because the model is deterministic. The region was

probably a narrow and shallow depression in the transport calibration error response surface,

but it would be difficult to find at all without a systematic procedure. RSM found it easily by
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varying all the parameters simultaneously. If only one factor is varied at a time, many features

of the response surface will not be identified.

5.2 Recommendations

For further research in this area the following are recommended:

1. Reduce the simulated time from 15 months to a few months in order to avoid the

problem created by the plume disappearing in the simulation. This change should

reduce the prevalence of the 67.1831 response for the transport calibration and improve

the behavior of the transport response surface.

2. Zonate some of the parameters to increase model accuracy. Zonation of parameters

such as transmissivity and dispersivity might significantly improve model response and

drop the average error response. This change would also show the strength of RSM in

its ability to vary large numbers of parameters while exploring the response surface.

3. Repeat the exercise on another data set or using another model. This repetition might

provide an indication of how RSM compares to the one-factor-at-a-time approach

overall, rather than just for Bioplume II using MADE-2 data, as in this research.

4. Calibrate both flow and transport simultaneously by using the sum of the RMS flow and

transport criteria for the error response surface. This approach could improve calibration

by taking interactions between degree of flow calibration and transport calibration into

account.

5. Repeat the research using fractional factorial designs to see how far the number of

required runs could be reduced.

6. Repeat the research using several different error criteria to compare their effect on

convergence.

7. Repeat the research using transient hydraulics to see whether the success of each

calibration technique depends on that aspect of the modeling.
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Appendix A. Biodegradation of Petroleum Hydrocarbons

The contamination of soil and groundwater has become a major issue in the media over

the past 20 years. The result of the public's interest in the issue was the passage of laws such

as the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA)

requiring cleanup of contaminated sites. The U.S. Air Force necessarily has interest in the issue

due to the number of contaminated sites located on Air Force (AF) bases. The extensive use of

jet fuels by the AF has led to a special interest in the remediation of petroleum hydrocarbons

in the subsurface. Due to the high solubility of some aromatic hydrocarbons, such as benzene,

toluene, ethylbenzene, and xylenes (BTEX), they pose an extra risk to human health and the

environment. This appendix will therefore focus on aromatic hydrocarbons.

Of all the remediation technologies, natural attenuation stands out as holding unusual

potential to decrease the cost of remediating many contaminated sites. Natural attenuation is

a remedial action where subsurface microorganisms, in combination with geophysical factors,

naturally clean the soil and groundwater. The potential savings are huge.

The natural attenuation process involves four factors: volatilization, dispersion, sorption

and degradation. Volatilization is the transfer of contamination from aqueous to vapor phases.

Dispersion is the spreading out of contaminants that reduces concentration, but not total

mass. Sorption is the adsorption of contaminants to the soil matrix. This process reduces

concentration of contaminants in groundwater, but not total mass. Degradation includes both

abiotic chemical and biotic transformation of contaminant species into other substances. This

process reduces the concentration and mass of contaminant. McAllister and Chiang (38:163-

164) notes that biodegradation is usually the most significant degradation process in the

subsurface. Stauffer and others (51:78) supported this conclusion by showing that the effect

of sorption on plume stabilization was negligible compared to the effect of biodegradation at

a site under aerobic conditions.

The concept of biodegradation of petroleum hydrocarbons is that the microorganisms

use the contaminant as a food source. The general equation can be seen as (11:179):
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Hydrocarbon + electron acceptor + microorganisms + inorganic nutrients =

Carbon Dioxide + water + microorganisms + waste products

Biodegradation is classified as aerobic if the electron acceptor is molecular oxygen

and anaerobic otherwise. Liss and Baker (36:303) list nitrate, sulfate, carbonate, iron and

manganese oxide as alternative electron acceptors. Aerobic biodegradation requires at least 1-

2 ppm dissolved oxygen and can rapidly degrade some compounds. First order rate constants

of 0.3-1.3/

The rate of biodegradation may be measured using the Respiration Quotient (30:477)

equal to actual respiration over potential respiration, where potential respiration was microbial

oxygen uptake measured after addition of an easily biodegradable carbon source, such as glu-

cose. They found a correlation coefficient of 0.997 between the quotient and concentration of

polycyclic aromatic hydrocarbons (PAH) showing the respiration coefficient was an indicator

of microbial metabolic activity.

Leahy and Colwell (35:307) note the impact of physical factors on microbial activity.

They cite research by Atlas and Bartha observing that low temperatures inhibit microbial

activity and research by Bossert and Bartha observing that higher temperatures increase

activity up to a point, beyond which disruption occurs. They also cite Dibble and Bartha

in concluding that extremely high concentrations of petroleum hydrocarbons may decrease

activity due to toxicity effects of components in the petroleum mixture.

It is clear that some toxicity could occur because of the wide variety of compounds

present in the petroleum hydrocarbon mixture. Atlas and Bartha (4:393-394) explain that a

typical petroleum mixture includes aliphatics, alicyclics, aromatics and other organics.

The microorganisms that metabolize hydrocarbons are mostly bacteria and fungi (35:308).

Rainwater and Scholze (43:108) cite a study by Ghiorse and Balkwill which approximated

the number of bacteria in the subsurface at one million per gram of dry soil. Chapelle

(18:336) notes that Pseudomonas putida has been shown in studies by Gibson and others

at the University of Texas to be capable of degrading benzene, toluene and ethylbenzene.

49



Leahy and Colwell (35:308) listed Archromobacter, Acinetobacter, Alcaligenes, Arthrobacter,

Bacillus, Flavobacterium, Nocardia and Pseudomonas as the most important hydrocarbon

degrading bacterial genera. They list Trichoderma, Mortierella, Asperigillus and Penicillium

as the most important fungal genera in soil media. Other genera noted in the literature for

their hydrocarbon degrading ability include Xanthobacter (54:1287) and Desulfobacterium

(8:178). Bak and Widel isolated a new species, Desulfobacterium phenolicolum, an obliga-

tory anaerobic halophile, capable of metabolizing phenol. Szewzyk and Pfennig (53:164-165)

identified Desulfobacterium catecholicum, a strictly anaerobic, sulfate reducing bacterium,

capable of chemolithoautotrophic growth on hydrogen and carbon dioxide or heterotrophic

growth on organics such as catechol. Heitkamp and Cemiglia (29:1612) isolated a halotoler-

ant strain capable of mineralizing naphthalene, phenanthrene, fluoranthrene, pyrene and other

aromatics to carbon dioxide when supplied with nutrients in the laboratory. Cutright and Lee

(22:404) identified a species of Mycobacterium capable of metabolizing polycyclic aromatic

hydrocarbons.

Although protozoans do not appear to utilize hydrocarbons directly (35:309), Madsen

and others (37:252) observed high density protozoan populations growing in a hydrocarbon

plume. The protozoans prey on bacteria that metabolize the hydrocarbons. They noted that

elevated protozoan biomass acts as an indicator of the biodegradation activity.

After a petroleum hydrocarbon is introduced to a microbial population there will typi-

cally be a lag time before biodegradation begins (58:1000) (28:256). During this period the

microbial population may be adapting to the petroleum hydrocarbon. Leahy and Colwell

(35:309) define adaptation as the effect of prior exposure in determining the rate at which

a microbial community will biodegrade hydrocarbons and cite Spain and others in defining

three mechanisms of adaptation: (1) changes in the action of enzymes, (2) mutations to genes

allowing new metabolic pathways and (3) natural selection for organisms with the metabolic

capability to degrade the petroleum hydrocarbon. They note that DNA encoded on plasmid

may play an important role in genetic adaptation for hydrocarbon metabolism because of its

high mobility due to conjugation and transformation. They cited a study by Chakrabarty on
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Pseudomonas that showed plasmid DNA was encoded for metabolism of xylene, toluene,

naphthalene and other compounds suggesting it may play a strong role in adaptation.

Zeyer and others (65:946) demonstrated cross-acclimation, defined as exposure to one

compound increasing the metabolism of other compounds of similar structure (35:309), by

demonstrating microorganisms adapted to m-xylene had a shorter lag time than expected when

metabolizing toluene.

Some authors report no adaptation. Angley and others (3:1406) observed no lag period

in lab experiments on aerobic degradation of BTEX compounds and other alkylbenzenes.

Davis and others (23:221) observed no lag time in experiments on aerobic degradation of

benzene until initial benzene concentration was increased from about 1 ppm to 10 ppm. After

the increase a 10 day lag occurred before biodegradation began. The absence of a lag period

indicates the microorganisms have no need to adapt to the substrate before they can begin

metabolism.

The rate at which metabolism occurs may be influenced by the molecular structure of

the hydrocarbon. Leahy and Colwell (35:305) cite Perry who ranks petroleum compounds

in decreasing order of susceptibility to biodegradation: n-alkanes, branched alkanes, low

molecular weight aromatics, and cyclic alkanes. Chapelle (18:350) cites a study by Barker

and others where benzene, toluene and xylenes were injected into an aquifer. They found

relative degradation rates under aerobic conditions to be: xylenes > toluene > benzene. Under

anaerobic conditions toluene and the xylenes were almost gone by 108 days. Benzene was

almost gone by 400 days.

Stauffer and others (51:73) supported the work of Barker and others noted above. They

injected contaminants into groundwater with a tritiated water tracer and monitored contaminant

concentrations. They verified p-xylene degrades faster than benzene under aerobic conditions

(51:82). Their results showed rapid BTEX biodegradation under aerobic conditions.

Angley and others (3:1406) performed lab experiments on aerobic degradation with

BTEX compounds and other alkylbenzenes, demonstrating a decrease in concentration to
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below detection limits (a decrease of four orders of magnitude for the BTEX compounds)

within 31 days. This was accompanied by rapid decreases in dissolved oxygen concentration.

Davis and others (23:221) studied biodegradation in the lab. They showed a decrease

in benzene concentration of 50% (from about 1 ppm) after four days under aerobic conditions.

The biologically-inhibited controls, on the other hand, showed only 2-18% concentration

decreases. When initial benzene was increased to about 10 ppm, 50% of the benzene was

gone after 14 days with complete degradation by 35 days. Under sulfate reducing anaerobic

conditions, 77 days were required to degrade 90% of 1 ppm benzene.

Morgan and others (40:189) studied both aerobic and anaerobic degradation in the

lab. They found that under aerobic conditions BTEX rapidly biodegraded. Furthermore they

found oxygen supply to be the limiting factor for degradation, and found that no biodegradation

occurred under anaerobic conditions, unless nitrate was added as an electron acceptor.

Baedecker and others (6:569) studied samples from a site in Minnesota under anaerobic

conditions. Their data showed benzene and alkylbenzenes degrade under aerobic conditions.

98% degradation of benzene and toluene occurred in 125 and 45 days respectively. This

was coupled with increases in iron and manganese concentrations, suggesting metal reducing

conditions.

Neilsen and others (41:461) performed a laboratory experiment on groundwater and

mixed groundwater/sediment media. They found no degradation of benzene, toluene, or

o-xylene under anaerobic conditions, but all were degraded under aerobic conditions. Degra-

dation of benzene and toluene required 40 to 70 days and resulted in reduction to less than

10% of initial concentrations (41:465).

Other authors who have studied this subject include Wilson and others (59:61) whose

lab studies confirmed field observations that aerobic and anaerobic biodegradation of alkyl-

benzenes occurred. Zeyer and others (65:944) showed complete mineralization of toluene and

m-xylene under anoxic denitrifying conditions using a continuous flow system. Wilson and
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others (58:997) demonstrated methane fermentation (anaerobic biodegradation) of toluene in

an aquifer.

The process of biodegradation is one of enzymatic transformation through a series of

metabolic intermediate stages. In the case of mineralization the end products are carbon

dioxide and water. Kerfoot (33:877) gave a simplified form of the stoichiometric equation for

aerobic biodegradation:

CHv + (X + R)O2 => XCO 2 + (Y)H20

For benzene, the degradation process involves, first, transformation to a catechol inter-

mediate and then breakdown of the ring structure through ortho or meta cleavage. Oxidation of

benzene via the enzyme benzene dioxygenase to form cis-benzene dihydrodiol is the first step.

The second step involves hydrogen removal via the enzyme nicotine adenine dinucleotide

(NAD). A diagram of this process is shown in Figure 6.

Catechol

H /OHo a~ OH CQI ~OH 'OH
HX

02 NAD NADH2

(Benzene dioxygenase)

Figure 6. Biodegradation of Benzene to Catechol
(18:337)
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The ortho cleavage of catechol involves breaking the ring structure between the two

hydroxyl groups. Chapelle (18:338) describes the ortho cleavage pathway through several

steps. A diagram is shown in Figure 7.

Catechol

OH

CO H Beta-ketoadipate-enol-lactone

/C COOH ~COOH COCH
X COOH C=OCO

(Further degradation)

Figure 7. Ortho-Cleavage Pathway
(18:338)

The alternative meta cleavage pathway involves ring breakage beside one of the two

hydroxyl groups on the catechol, followed by insertion of two oxygen atoms via the enzyme

catechol 2,3-dioxygenase. The ring is then cleaved by a hydrolase (water removing enzyme).

Further degradation of the organic acid product to CO2 may then occur. A diagram is shown

in Figure 8. Note that beta-oxidation in the figure refers to oxidation of the middle carbon and

removal as carbon dioxide.

Chapelle (18:337) notes that ortho and meta cleavage of catechol has been identified

in Pseudomonas putida, Acinetobacter, Bacillus, Alcaligenes and Nocardia. Breakdown of

toluene and xylenes via Pseudomonas follow processes similar to that of benzene except that

toluene and xylenes form methyl- and dimethylcatechol respectively, and both follow the

meta-cleavage pathway (18:339).
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Catechol
HOH 2HO COOH CH3 COOH

0 0011 2
~OH U H 11/

CH3COCOOH

Beta-oxidation 
Z

Figure 8. Meta-Cleavage Pathway
(18:338)

Anaerobic transformation of benzene and toluene was studied, using gas chromatog-

raphy/mass spectrometry (28:254). Results suggest initial ring hydroxylation or methyl-

oxidation (in the toluene case) leading to phenol, cresol and aromatic alcohol intermediates.

They observed incomplete mineralization to methane and carbon dioxide. Cozzarelli and oth-

ers (20:138-140) support these findings. They identified oxygenated intermediates resulting

from anaerobic degradation. Benzene produced phenol, toluene produced benzoic acid and

xylenes produced toluic acids. The theoretical degradation pathways are shown in Figures 9

and 10.

Cozzarelli and others (21:863) found that benzene and alkylbenzenes degrade to organic

acid intermediates under anaerobic conditions. They also found that reduction of iron, man-

ganese, and nitrogen accompanied oxidation of the aromatics. Anaerobic biodegradation by

denitrification is insignificant under natural conditions due to the usually low levels of nitrate

in most contaminated aquifers (18:344).

Benzene degradation under methanogenic conditions begins with oxidation of benzene

to phenol, through several aliphatic acids to final production of carbon dioxide and methane
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OH 0

O Q- Aliphatic acids

Benzene Phenol Cyclohexane

C02 + CH4

Figure 9. Anaerobic, Ring Hydroxylation of Benzene
(28:258)

(18:341). Degradation of toluene under methanogenic conditions begins with oxidation to

benzylalcohol and then to benzaldehyde, benzoic acid, and through several aliphatic acid stages

to become carbon dioxide and methane. Cozzarelli and others (20:138-140) may support this

through their study of a site in Minnesota. Under anaerobic conditions, they monitored

benzene transformation to phenol and toluene transformation to benzoic acid. Alternatively

toluene may oxidize directly to ortho or p-cresol and then to carbon dioxide and methane

(18:341).

Under iron reducing conditions degradation of toluene is to benzylalcohol, benzalde-

hyde, benzoate, and finally to carbon dioxide. At each step oxidation of the aromatic is

accompanied by reduction of Fe(III) to Fe(II) (18:343). Baedecker and others (6:580) show

a theoretical stoichiometric equation for transformation of toluene using Iron (III) Hydroxide

as an electron acceptor:

C7H8 + 36Fe(OH) 3 + 65H + #- 7HCO3 + 8Fe + + 871120
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CH3  CH20H CHO COOH

Aliphatic acids

C02 + CH4

Figure 10. Anaerobic, Methyl-Oxidation of Toluene
(28:258)

The oxygen from the iron (III) hydroxide was inserted into the ring structure of toluene

in this example. In other anaerobic cases the source of oxygen inserted into ring structures

may be the water itself. Vogel and Grbic-Galic (55:200) used 'so-labeled water to show

that for the first oxidation step in the anaerobic transformation of benzene and toluene under

methanogenic conditions, the oxygen atom came from water.

Clearly, a variety of microbial genera are capable of metabolizing many aromatic

petroleum hydrocarbon compounds. Many conditions once thought prohibitive of biodegra-

dation are now proven possibilities for natural attenuation. Although the data suggest aerobic

biodegradation may occur more rapidly than anaerobic biodegradation, it is apparent that both

may effectively reduce BTEX concentrations in an aquifer. If this approach received more

regulatory acceptance, savings of restoration dollars are possible. Remedial costs for natural

attenuation candidate sites could be significantly lower than under alternative technologies.

If natural systems can be self-cleaning, public funds could be used somewhere other than on

IRP sites.
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Appendix B. Initial Bioplume Input File
Bioplume Input File for MADE-2 data
2 6 20 30 5400 10 7 5 200 1 9 1 0 0 0 0 0 1
55E-4 .001 0.315 131.66 0.0 10.0 0.0 19.33 13.49 0.4 0.5 1.0

000000
10 15
4 25
16 25
48
16 8
11 23 -0.001942 68.1E3 4.2E3
0 2.26042E-3
0 1.97
00
1 1.0
00000000000000000000
0 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000

00000000000000000000
1 1.0 0.0 4200 0.0 0

1i1.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 203.5 203.5 203.4 203.4 203.4 203.4 203.4 203.4 203.4 203.4 203.4 203.4 203.4 203.4 203.5 203.5 203.5 203.6 0.0
0.0 203.5 203.5 203.4 203.4 203.4 203.4 203.4 203.4 203.4 203.4 203.4 203.4 203.4 203.5 203.5 203.6 203.6 203.7 0.0
0.0 203.5 203.5 203.4 203.4 203.4 203.4 203.4 203.4 203.4 203.4 203.4 203.4 203.4 203.5 203.6 203.6 203.7 203.8 0.0
0.0 203.5 203.5 203.4 203.4 203.4 203.4 203.4 203.4 203.4 203.4 203.4 203.4 203.4 203.5 203.6 203.7 203.8 203.8 0.0
0.0 203.5 203.5 203.4 203.4 203.4 203.4 203.4 203.4 203.4 203.3 203.4 203.4 203.5 203.6 203.7 203.8 203.9 203.9 0.0
0.0 203.5 203.5 203.4 203.4 203.4 203.4 203.3 203.4 203.3 203.3 203.3 203.4 203.5 203.6 203.7 203.8 203.9 204.0 0.0
0.0 203.5 203.5 203.5 203.4 203.4 203.4 203.4 203.4 203.4 203.3 203.3 203.4 203.5 203.6 203.8 203.9 204.0 204.1 0.0
0.0 203.6 203.5 203.5 203.4 203.4 203.4 203.4 203.4 203.4 203.4 203.4 203.4 203.6 203.7 203.8 204.0 204.1 204.2 0.0
0.0 203.6 203.5 203.5 203.5 203.4 203.4 203.4 203.4 203.4 203.4 203.4 203.5 203.6 203.7 203.9 204.0 204.2 204.4 0.0
0.0 203.6 203.6 203.5 203.5 203.5 203.4 203.5 203.5 203.5 203.5 203.5 203.6 203.6 203.7 203.9 204.1 204.3 204.5 0.0
0.0 203.6 203.6 203.5 203.5 203.5 203.5 203.5 203.5 203.5 203.5 203.6 203.6 203.7 203.8 203.9 204.1 204.3 204.5 0.0
0.0 203.7 203.6 203.6 203.5 203.5 203.5 203.5 203.6 203.6 203.6 203.6 203.6 203.7 203.8 203.9 204.0 204.2 204.3 0.0
0.0 203.7 203.7 203.6 203.6 203.5 203.5 203.6 203.7 203.6 203.6 203.6 203.6 203.7 203.7 203.8 204.0 204.1 204.1 0.0
0.0 203.7 203.7 203.6 203.6 203.6 203.5 203.7 203.7 203.7 203.7 203.7 203.7 203.7 203.7 203.8 203.9 204.0 204.0 0.0
0.0 203.8 203.7 203.7 203.7 203.6 203.6 203.7 203.8 203.7 203.7 203.7 203.7 203.7 203.7 203.7 203.8 203.9 204.0 0.0
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0.0 203.8 203.8 203.8 203.7 203.7 203.7 203.7 203.8 203.8 203.7 203.7 203.7 203.7 203.7 203.7 203.8 203.9 203.9 0.0
0.0 203.9 203.8 203.8 203.8 203.8 203.8 203.8 203.8 203.8 203.8 203.7 203.7 203.7 203.6 203.6 203.7 203.8 203.9 0.0
0.0 203.9 203.9 203.9 203.9 203.8 203.8 203.9 203.9 203.9 203.8 203.8 203.7 203.7 203.7 203.7 203.8 203.9 203.9 0.0
0.0 204.0 204.0 203.9 203.9 203.9 203.9 203.9 203.9 203.9 203.9 203.8 203.8 203.7 203.7 203.7 203.8 203.9 204.0 0.0
0.0 204.0 204.0 204.0 204.0 204.0 204.0 204.0 204.0 204.0 204.0 203.9 203.8 203.8 203.7 203.7 203.8 203.9 204.0 0.0
0.0 204.1 204.1 204.1 204.1 204.1 204.1 204.1 204.1 204.1 204.0 204.0 203.9 203.8 203.7 203.8 203.9 204.0 204.1 0.0
0.0 204.2 204.2 204.2 204.2 204.2 204.2 204.2 204.2 204.2 204.1 204.1 204.0 203.9 203.9 203.9 204.0 204.1 204.1 0.0
0.0 204.2 204.2 204.2 204.2 204.3 204.3 204.3 204.3 204.3 204.3 204.2 204.2 204.1 204.0 204.1 204.1 204.2 204.2 0.0
0.0 204.3 204.3 204.3 204.3 204.3 204.4 204.4 204.4 204.4 204.4 204.4 204.3 204.2 204.2 204.2 204.2 204.3 204.3 0.0
0.0 204.3 204.3 204.4 204.4 204.4 204.4 204.5 204.5 204.5 204.6 204.5 204.4 204.4 204.4 204.4 204.4 204.4 204.4 0.0
0.0 204.4 204.4 204.4 204.5 204.5 204.5 204.6 204.6 204.8 204.8 204.6 204.6 204.5 204.5 204.5 204.5 204.5 204.5 0.0
0.0 204.4 204.5 204.5 204.5 204.6 204.6 204.7 204.7 204.8 204.8 204.7 204.7 204.6 204.6 204.6 204.6 204.6 204.6 0.0
0.0 204.5 204.5 204.5 204.6 204.6 204.7 204.7 204.8 204.8 204.9 204.8 204.8 204.7 204.7 204.8 204.8 204.7 204.7 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0 0.0
1 1000.
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 5.37 5.41 5.44 5.48 5.50 5.52 5.53 5.50 5.42 5.24 4.82 4.12 3.36 3.11 3.16 3.24 3.31 3.38 0.00
0.00 5.35 5.39 5.43 5.47 5.50 5.52 5.53 5.50 5.43 5.27 4.85 4.08 3.30 3.06 3.14 3.22 3.31 3.38 0.00
0.00 5.33 5.37 5.41 5.45 5.48 5.51 5.52 5.49 5.41 5.26 4.92 4.07 3.44 3.18 3.19 3.26 3.34 3.41 0.00
0.00 5.30 5.34 5.38 5.42 5.45 5.48 5.49 5.47 5.37 5.12 4.62 3.98 3.54 3.32 3.29 3.33 3.40 3.46 0.00
0.00 5.26 5.30 5.34 5.38 5.41 5.44 5.46 5.44 5.33 4.96 4.20 3.84 3.61 3.46 3.41 3.44 3.48 3.53 0.00
0.00 5.22 5.26 5.29 5.33 5.36 5.39 5.41 5.40 5.34 5.00 4.13 3.85 3.70 3.59 3.55 3.56 3.59 3.62 0.00
0.00 5.17 5.20 5.24 5.27 5.30 5.32 5.33 5.33 5.32 5.17 4.39 4.00 3.83 3.74 3.70 3.69 3.71 3.73 0.00
0.00 5.11 5.15 5.18 5.20 5.23 5.24 5.24 5.22 5.17 4.96 4.49 4.15 3.98 3.89 3.85 3.84 3.83 3.84 0.00
0.00 5.06 5.08 5.11 5.13 5.14 5.15 5.13 5.08 4.98 4.78 4.49 4.26 4.12 4.05 4.01 3.99 3.97 3.96 0.00
0.00 4.99 5.01 5.04 5.05 5.06 5.05 5.02 4.95 4.81 4.61 4.46 4.33 4.25 4.20 4.17 4.14 4.11 4.08 0.00
0.00 4.92 4.94 4.96 4.97 4.97 4.96 4.92 4.83 4.68 4.46 4.44 4.41 4.38 4.36 4.33 4.30 4.25 4.20 0.00
0.00 4.85 4.87 4.88 4.89 4.89 4.87 4.83 4.75 4.62 4.49 4.48 4.50 4.51 4.51 4.49 4.46 4.40 4.33 0.00
0.00 4.78 4.79 4.80 4.80 4.80 4.79 4.76 4.70 4.61 4.54 4.55 4.60 4.64 4.67 4.66 4.61 4.53 4.44 0.00
0.00 4.70 4.71 4.72 4.72 4.72 4.72 4.70 4.67 4.62 4.59 4.64 4.71 4.78 4.82 4.83 4.77 4.66 4.54 0.00
0.00 4.62 4.63 4.63 4.63 4.64 4.64 4.64 4.64 4.64 4.62 4.73 4.82 4.89 4.96 4.99 4.91 4.77 4.63 0.00
0.00 4.54 4.54 4.54 4.55 4.55 4.57 4.59 4.62 4.67 4.74 4.86 4.91 4.98 5.08 5.15 5.03 4.85 4.68 0.00
0.00 4.46 4.45 4.45 4.45 4.46 4.48 4.52 4.59 4.69 4.85 4.97 4.95 5.00 5.12 5.28 5.08 4.88 4.70 0.00
0.00 4.38 4.36 4.36 4.35 4.36 4.38 4.43 4.52 4.66 4.83 4.92 4.90 4.95 5.05 5.13 5.02 4.85 4.69 0.00
0.00 4.29 4.27 4.26 4.25 4.25 4.27 4.32 4.42 4.57 4.70 4.73 4.76 4.82 4.90 4.95 4.90 4.78 4.64 0.00
0.00 4.20 4.18 4.16 4.14 4.13 4.13 4.17 4.26 4.42 4.56 4.54 4.56 4.63 4.72 4.77 4.75 4.67 4.57 0.00
0.00 4.12 4.09 4.06 4.03 4.00 3.98 3.99 4.03 4.19 4.41 4.25 4.31 4.41 4.51 4.58 4.59 4.55 4.48 0.00
0.00 4.04 4.00 3.96 3.91 3.87 3.82 3.79 3.76 3.77 3.71 3.85 4.02 4.18 4.31 4.39 4.43 4.42 4.38 0.00
0.00 3.96 3.91 3.86 3.80 3.74 3.67 3.59 3.48 3.31 3.19 3.49 3.76 3.96 4.12 4.22 4.28 4.29 4.28 0.00
0.00 3.88 3.83 3.77 3.70 3.63 3.54 3.42 3.27 3.05 2.96 3.27 3.55 3.77 3.94 4.06 4.13 4.17 4.18 0.00
0.00 3.81 3.75 3.69 3.61 3.53 3.43 3.30 3.15 2.99 2.97 3.17 3.41 3.62 3.79 3.92 4.00 4.05 4.08 0.00
0.00 3.75 3.68 3.61 3.54 3.45 3.34 3.22 3.09 2.99 2.99 3.13 3.32 3.51 3.67 3.80 3.89 3.95 3.98 0.00
0.00 3.69 3.62 3.55 3.47 3.38 3.28 3.18 3.07 3.00 3.01 3.11 3.27 3.43 3.58 3.70 3.79 3.85 3.90 0.00
0.00 3.63 3.57 3.49 3.42 3.33 3.24 3.15 3.07 3.02 3.03 3.11 3.23 3.37 3.50 3.61 3.70 3.77 3.82 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1
92 92 7 200 1 0 0 0 0 0 0.2521 0 0
11 23 0.0 0.0 0.0
0
0
0
0
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Appendix C. SAS Output

C.] Stepwise Procedure for RSM Screening Phase

SAS Program:

option linesize=80;

data dl;
infile 'rsmphsl.dat';
input t p d y;

tp=t*p;

td=t*d;
pd=p*d;
tpd=t*p*d;

proc print;

proc stepwise;
model y = t p d tp td pd tpd/stepwise;

run;

SAS Output:

The SAS System 16
08:51 Friday, October 6, 1995

OBS T P D Y TP TD PD TPD

1 -1 -1 -1 27246.50 1 1 1 -1

2 -1 -1 1 544968.00 1 -1 -1 1
3 -1 1 -1 27246.50 -1 1 -1 1
4 -1 1 1 544968.00 -1 -1 1 -1

5 1 -1 -1 2.22 -1 -1 1 1
6 1 -1 1 1.81 -1 1 -1 -1
7 1 1 -1 2.22 1 -1 -1 -1
8 1 1 1 1.81 1 1 1 1

The SAS System 17

08:51 Friday, October 6, 1995

Stepwise Procedure for Dependent Variable Y
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Step 1 Variable T Entered R-square = 0.37918514 C(p)

DF Sum of Squares Mean Square F Prob>F

Regression 1 163712412173.29 163712412173.29 3.66 0.1041
Error 6 268035551562.41 44672591927.069

Total 7 431747963735.70

Parameter Standard Type II

Variable Estimate Error Sum of Squares F Prob>F

INTERCEP 143054.63198250 74726.66184759 163717021853.19 3.66 0.1041

T -143052.6180175 74726.66184759 163712412173.29 3.66 0.1041

Bounds on condition number: 1, 1

The SAS System 18
08:51 Friday, October 6, 1995

Step 2 Variable TD Entered R-square = 0.68959305 C(p)

DF Sum of Squares Mean Square F Prob>F

Regression 2 297730396829.23 148865198414.62 5.55 0.0537
Error 5 134017566906.47 26803513381.293
Total 7 431747963735.70

Parameter Standard Type II

Variable Estimate Error Sum of Squares F Prob>F

INTERCEP 143054.63198250 57882.97826358 163717021853.19 6.11 0.0564

T -143052.6180175 57882.97826358 163712412173.29 6.11 0.0564
TD -129430.4758625 57882.97826358 134017984655.95 5.00 0.0756

Bounds on condition number: 1, 4

The SAS System 19

08:51 Friday, October 6, 1995

Step 3 Variable D Entered R-square = 1.00000000 C(p) =

DF Sum of Squares Mean Square F Prob>F
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Regression 3 431747963735.70 143915987911.90

Error 4 0.00000000 0.00000000

Total 7 431747963735.70

Parameter Standard Type II

Variable Estimate Error Sum of Squares F Prob>F

INTERCEP 143054.63198250 0.00000000 163717021853.19

T -143052.6180175 0.00000000 163712412173.29

D 129430.27413750 0.00000000 134017566906.47
TD -129430.4758625 0.00000000 134017984655.95

Bounds on condition number: 1, 9

All variables left in the model are significant at the 0.1500 level.

No other variable met the 0.1500 significance level for entry into the model.
The SAS System 20

08:51 Friday, October 6, 1995

Summary of Stepwise Procedure for Dependent Variable Y

Variable Number Partial Model

Step Entered Removed In R**2 R**2 C(p) F Prob>F

1 T 1 0.3792 0.3792 3.6647 0.1041

2 TD 2 0.3104 0.6896 5.0000 0.0756

3 D 3 0.3104 1.0000

C.2 First Run of the First-Order Design Phase

SAS Program:

option linesize=80;
data dl;

infile 'rsmphs2.dat';
input t d y;

proc print;
proc reg;

model y = t d;

run;
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SAS Output:

The SAS System 7

08:51 Friday, October 6, 1995

OBS T D Y

1 1 1 2.11605

2 1 -1 2.36023
3 -1 1 1.24133
4 -1 -1 3.37311

The SAS System 8

08:51 Friday, October 6, 1995

Model: MODEL1
Dependent Variable: Y

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F

Model 2 1.41607 0.70803 0.795 0.6214
Error 1 0.89076 0.89076
C Total 3 2.30683

Root MSE 0.94380 R-square 0.6139
Dep Mean 2.27268 Adj R-sq -0.1584
C.V. 41.52806

The SAS System 9

08:51 Friday, October 6, 1995

Parameter Estimates

Parameter Standard T for HO:
Variable DF Estimate Error Parameter=0 Prob > ITI

63



INTERCEP 1 2.272680 0.47190000 4.816 0.1303
T 1 -0.034540 0.47190000 -0.073 0.9535

D 1 -0.593990 0.47190000 -1.259 0.4274

C3 40% Design without Centerpoint
SAS Program:

option linesize=80;

data dl;
infile 'rsmphs3.dat';

input t d y;
proc print;
proc reg;

model y = t d;

run;

SAS Output:

The SAS System 1

17:11 Thursday, October 26, 1995

OBS T D Y

1 -1 -1 2.21077
2 -1 1 7.46751
3 1 -1 0.96785

4 1 1 2.21034
The SAS System 2

17:11 Thursday, October 26, 1995

Model: MODEL1
Dependent Variable: Y

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F

Model 2 21.12278 10.56139 2.622 0.4002
Error 1 4.02855 4.02855

64



C Total 3 25.15133

Root MSE 2.00713 R-square 0.8398

Dep Mean 3.21412 Adj R-sq 0.5195
C.V. 62.44718

The SAS System 3
17:11 Thursday, October 26, 1995

Parameter Estimates

Parameter Standard T for HO:

Variable DF Estimate Error Parameter=0 Prob > ITI

INTERCEP 1 3.214118 1.00356300 3.203 0.1927
T 1 -1.625022 1.00356300 -1.619 0.3522

D 1 1.624807 1.00356300 1.619 0.3522

C.4 40% Design With Centerpoint

SAS Program:

option linesize=80;

data dl;
infile 'rsmphs3.dat';
input t d y;

proc print;
proc reg;

model y = t d;
run;

SAS Output:

The SAS System 21

08:51 Friday, October 6, 1995

OBS T D Y

1 -1 -1 2.21077

2 -1 1 7.46751
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3 1 -1 0.96785
4 1 1 2.21034

5 0 0 2.21077
The SAS System 22

08:51 Friday, October 6, 1995

Model: MODEL1

Dependent Variable: Y

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F

Model 2 21.12278 10.56139 4.370 0.1862
Error 2 4.83392 2.41696
C Total 4 25.95670

Root MSE 1.55466 R-square 0.8138
Dep Mean 3.01345 Adj R-sq 0.6275

C.V. 51.59065

The SAS System 23

08:51 Friday, October 6, 1995

Parameter Estimates

Parameter Standard T for HO:

Variable DF Estimate Error Parameter=0 Prob > ITI

INTERCEP 1 3.013448 0.69526402 4.334 0.0493
T 1 -1.625022 0.77732880 -2.091 0.1717
D 1 1.624807 0.77732880 2.090 0.1718

C.5 5% Design Around 50% Step along Gradient

SAS Program:

option linesize=80;

data dl;
infile 'Bdesign.dat';

input t d y;
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proc print;
proc reg;

model y = t d;

run;

SAS Output:

The SAS System 16
15:55 Saturday, October 7, 1995

OBS T D Y

1 -1 -1 0.94093
2 -1 1 1.01783
3 1 -1 0.91888

4 1 1 0.94280
5 0 0 0.94190

The SAS System 17
15:55 Saturday, October 7, 1995

Model: MODELl

Dependent Variable: Y

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F

Model 2 0.00490 0.00245 5.821 0.1466
Error 2 0.00084 0.00042

C Total 4 0.00574

Root MSE 0.02051 R-square 0.8534

Dep Mean 0.95247 Adj R-sq 0.7068

C.V. 2.15340

The SAS System 18

15:55 Saturday, October 7, 1995

Parameter Estimates
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Parameter Standard T for HO:

Variable DF Estimate Error Parameter=0 Prob > ITI

INTERCEP 1 0.952465 0.00917254 103.839 0.0001

T 1 -0.024272 0.01025521 -2.367 0.1416

D 1 0.025206 0.01025521 2.458 0.1332

C6 5% Design on Step 9 Point
SAS Program:

option linesize=80;
data dl;

infile 'Bdesign.dat';
input t d y;

proc print;

proc reg;

model y = t d;

run;

SAS Output:

The SAS System 1
15:37 Sunday, October 8, 1995

OBS T D Y

1 -1 -1 0.92522
2 71 1 0.97780
3 1 -1 0.92392

4 1 1 0.92522
5 0 0 0.92522

The SAS System 2
15:37 Sunday, October 8, 1995

Model: MODELl
Dependent Variable: Y

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Prob>F
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Model 2 0.00145 0.00073 1.840 0.3521
Error 2 0.00079 0.00039
C Total 4 0.00224

Root MSE 0.01986 R-square 0.6479

Dep Mean 0.93547 Adj R-sq 0.2959
C.V. 2.12296

The SAS System 3
15:37 Sunday, October 8, 1995

Parameter Estimates

Parameter Standard T for HO:
Variable DF Estimate Error Parameter=0 Prob > ITI

INTERCEP 1 0.935474 0.00888155 105.328 0.0001
T 1 -0.013471 0.00992988 -1.357 0.3077
D 1 0.013471 0.00992988 1.357 0.3077

C. 7 First Ridge Analysis
SAS Program:

linesize=80;

data dl;
infile='phs2.dat';
input t d y;

proc print;
proc rsreg;

model y = t d/nocode;
ridge min radius = 0 to 4 by 0.1;

run;

SAS Output:

The SAS System 16:34 Sunday, October 8, 1995 4
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OBS T D Y TD TT DD

1 -1.000 -1.000 0.92522 1 1.00000 1.00000

2 -1.000 1.000 0.97780 -1 1.00000 1.00000

3 1.000 -1.000 0.92392 -1 1.00000 1.00000

4 1.000 1.000 0.92522 1 1.00000 1.00000

5 0.000 0.000 0.92522 0 0.00000 0.00000

6 1.414 0.000 0.91949 0 1.99940 0.00000

7 -1.414 0.000 0.95819 0 1.99940 0.00000

8 0.000 1.414 0.95497 0 0.00000 1.99940
9 0.000 -1.414 0.91991 0 0.00000 1.99940

The SAS System 16:34 Sunday, October 8, 1995

Response Surface for Variable Y

Response Mean 0.936658
Root MSE 0.000898

R-Square 0.9993

Coef. of Variation 0.0959

Degrees

of Type I Sum

Regression Freedom of Squares R-Square F-Ratio Prob > F

Linear 2 0.002813 0.7766 1744.2 0.0000

Quadratic 2 0.000149 0.0412 92.520 0.0020

Crossproduct 1 0.000657 0.1815 815.3 0.0001
Total Regress 5 0.003619 0.9993 897.8 0.0001

The SAS System 16:34 Sunday, October 8, 1995 E

Degrees

of Sum of
Residual Freedom Squares Mean Square

Total Error 3 0.000002419 0.000000806

Degrees
of Parameter Standard T for HO:
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Parameter Freedom Estimate Error Parameter=0 Prob > V

INTERCEPT 1 0.925218 0.000898 1030.4 0.0000

T 1 -0.013577 0.000317 -42.765 0.0000

D 1 0.012934 0.000317 40.739 0.0000

T*T 1 0.006785 0.000527 12.887 0.0010

D*T 1 -0.012819 0.000449 -28.553 0.0001

D*D 1 0.006087 0.000527 11.560 0.0014

The SAS System 16:34 Sunday, October 8, 1995

Degrees

of Sum of
Factor Freedom Squares Mean Square F-Ratio Prob > F

T 3 0.002266 0.000755 936.7 0.0001

D 3 0.002103 0.000701 869.5 0.0001
The SAS System 16:34 Sunday, October 8, 1995 E

Canonical Analysis of Response Surface

Critical
Factor Value

T -0.595868
D -1.689911

Predicted value at stationary point 0.918335

Eigenvectors
Eigenvalues T D

0.012855 0.726087 -0.687603
0.000016930 0.687603 0.726087

Stationary point is a minimum.

The SAS System 16:34 Sunday, October 8, 1995 S
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Estimated Ridge of Minimum Response for Variable Y

Estimated Standard Factor Values
Radius Response Error T D

0 0.925218 0.000898 0 0
0.100000 0.923471 0.000894 0.072373 -0.069009
0.200000 0.921982 0.000882 0.144656 -0.138110
0.300000 0.920750 0.000863 0.216789 -0.207371
0.400000 0.919774 0.000837 0.288631 -0.276933
0.500000 0.919056 0.000804 0.359806 -0.347188
0.600000 0.918595 0.000767 0.428764 -0.419716
0.700000 0.918390 0.000726 0.474604 -0.514540
0.800000 0.918363 0.000684 0.295297 -0.743505
0.900000 0.918355 0.000645 0.163626 -0.885001
1.000000 0.918350 0.000615 0.057195 -0.998363
1.100000 0.918346 0.000599 -0.037907 -1.099347
1.200000 0.918343 0.000604 -0.126535 -1.193310
1.300000 0.918340 0.000637 -0.210988 -1.282764
1.400000 0.918338 0.000699 -0.292543 -1.369094
1.500000 0.918336 0.000789 -0.371980 -1.453145
1.600000 0.918335 0.000904 -0.449810 -1.535471

The SAS System 16:34 Sunday, October 8, 1995 i(

Estimated Standard Factor Values
Radius Response Error T D

1.700000 0.918335 0.001040 -0.526389 -1.616451
1.800000 0.918335 0.001196 -0.601967 -1.696359
1.900000 0.918335 0.001368 -0.676733 -1.775396
2.000000 0.918335 0.001556 -0.750829 -1.853714
2.100000 0.918337 0.001757 -0.824363 -1.931431
2.200000 0.918338 0.001971 -0.897423 -2.008639
2.300000 0.918340 0.002198 -0.970077 -2.085414
2.400000 0.918342 0.002437 -1.042383 -2.161814
2.500000 0.918344 0.002688 -1.114384 -2.237889
2.600000 0.918347 0.002950 -1.186121 -2.313681
2.700000 0.918350 0.003224 -1.257624 -2.389222
2.800000 0.918354 0.003509 -1.328920 -2.464543
2.900000 0.918358 0.003805 -1.400033 -2.539667
3.000000 0.918362 0.004112 -1.470982 -2.614615
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3.100000 0.918367 0.004430 -1.541783 -2.689406
3.200000 0.918372 0.004759 -1.612451 -2.764055
3.300000 0.918377 0.005099 -1.683000 -2.838576
3.400000 0.918383 0.005449 -1.753440 -2.912979
3.500000 0.918389 0.005811 -1.823780 -2.987277
3.600000 0.918395 0.006183 -1.894030 -3.061478

The SAS System 16:34 Sunday, October 8, 1995 1'

Estimated Standard Factor Values

Radius Response Error T D

3.700000 0.918402 0.006565 -1.964197 -3.135591
3.800000 0.918409 0.006959 -2.034288 -3.209622
3.900000 0.918416 0.007363 -2.104309 -3.283578
4.000000 0.918424 0.007777 -2.174265 -3.357465

C.8 Screening Designfor Transport Calibration

SAS Program:

option linesize=80;
data dl;

infile 'transl.dat';
input alphaL ratio F Rf RC y;

proc print;
proc reg;

model y = alphaL ratio F Rf RC;
run;

SAS Output:

The SAS System 1
08:52 Wednesday, October 18, 1995

OBS ALPHAL RATIO F RF RC Y

1 -1 -1 -1 -1 -1 94.047
2 -1 -1 -1 -1 1 67.183
3 -1 -1 -1 1 -1 219.256

4 -1 -1 -1 1 1 77.893
5 -1 -1 1 -1 -1 172.274

6 -1 -1 1 -1 1 73.619
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7 -1 -1 1 1 -1 273.971
8 -1 -1 1 1 1 93.629
9 -1 1 -1 -1 -1 67.183

10 -1 1 -1 -1 1 67.183
11 -1 1 -1 1 -1 67.183
12 -1 1 -1 1 1 67.183
13 -1 1 1 -1 -1 67.183

14 -1 1 1 -1 1 67.183
15 -1 1 1 1 -1 67.174

16 -1 1 1 1 1 67.183
17 1 -1 -1 -1 -1 67.183
18 1 -1 -1 -1 1 67.183
19 1 -1 -1 1 -1 78.544
20 1 -1 -1 1 1 67.183

The SAS System 2

08:52 Wednesday, October 18, 1995

OBS ALPHAL RATIO F RF RC Y

21 1 -1 1 -1 -1 67.051
22 1 -1 1 -1 1 67.183
23 1 -1 1 1 -1 128.365

24 1 -1 1 1 1 67.949
25 1 1 -1 -1 -1 67.183
26 1 1 -1 -1 1 67.183
27 1 1 -1 1 -1 67.183
28 1 1 -1 1 1 67.183
29 1 1 1 -1 -1 67.183
30 1 1 1 -1 1 67.183
31 1 1 1 1 -1 67.183
32 1 1 1 1 1 67.183

The SAS System 3

08:52 Wednesday, October 18, 1995

Model: MODEL1

Dependent Variable: Y

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F
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Model 5 31342.60698 6268.52140 4.126 0.0068

Error 26 39503.12918 1519.35112

C Total 31 70845.73616

Root MSE 38.97885 R-square 0.4424

Dep Mean 86.16980 Adj R-sq 0.3352

C.V. 45.23494

The SAS System 4

08:52 Wednesday, October 18, 1995

Parameter Estimates

Parameter Standard T for HO:

Variable DF Estimate Error Parameter=0 Prob > ITI

INTERCEP 1 86.169800 6.89055314 12.505 0.0001

ALPHAL 1 -14.413200 6.89055314 -2.092 0.0464

RATIO 1 -18.987263 6.89055314 -2.756 0.0106

F 1 6.423706 6.89055314 0.932 0.3598

RF 1 10.345581 6.89055314 1.501 0.1453

RC 1 -16.214344 6.89055314 -2.353 0.0265

C.9 First-Order Designfor RSM Transport Calibration
SAS Program:

option linesize=80;

data dl;
infile 'trans2.dat';

input alphaL ratio y;

y=y-67;
proc print;

proc reg;
model y = alphaL ratio;

run;

SAS Output:

The SAS System 4

17:24 Wednesday, October 18, 1995
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OBS ALPHAL RATIO Y

1 -1 -1 0.1906
2 -1 1 0.0921
3 1 -1 0.0505

4 1 1 0.1115

The SAS System 5
17:24 Wednesday, October 18, 1995

Model: MODEL1
Dependent Variable: Y

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Prob>F

Model 2 0.00399 0.00200 0.314 0.7838

Error 1 0.00636 0.00636
C Total 3 0.01035

Root MSE 0.07975 R-square 0.3857

Dep Mean 0.11118 Adj R-sq -0.8428

C.V. 71.73375

The SAS System 6

17:24 Wednesday, October 18, 1995

Parameter Estimates

Parameter Standard T for HO:

Variable DF Estimate Error Parameter=0 Prob > ITI

INTERCEP 1 0.111175 0.03987500 2.788 0.2192

ALPHAL 1 -0.030175 0.03987500 -0.757 0.5876
RATIO 1 -0.009375 0.03987500 -0.235 0.8530

C.10 Ridge Analysis for RSM Transport Calibration

SAS Program:

option linesize=80;
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data dl;
infile 'trans3.dat';

input alphaL ratio y;
proc print;

proc rsreg;
model y = alphaL ratio/nocode;
ridge min radius = 0 to 5 by 0.1;

run;

SAS Output:

The SAS System 7

17:11 Thursday, October 26, 1995

OBS ALPHAL RATIO Y

1 -1.000 -1.000 67.1906
2 -1.000 1.000 67.0921

3 1.000 -1.000 67.0505
4 1.000 1.000 67.1115
5 -1.414 0.000 67.2464

6 1.000 0.000 67.0764
7 0.000 1.414 67.0327

8 0.000 -1.000 67.0394
9 0.000 0.000 67.0362

The SAS System 8
17:11 Thursday, October 26, 1995

Response Surface for Variable Y

Response Mean 67.097311
Root MSE 0.008413
R-Square 0.9953
Coef. of Variation 0.0125

Degrees
of Type I Sum

Regression Freedom of Squares R-Square F-Ratio Prob > F

Linear 2 0.018495 0.4105 130.6 0.0012
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Quadratic 2 0.019983 0.4436 141.2 0.0011
Crossproduct 1 0.006360 0.1412 89.850 0.0025
Total Regress 5 0.044838 0.9953 126.7 0.0011

The SAS System 9
17:11 Thursday, October 26, 1995

Degrees

of Sum of

Residual Freedom Squares Mean Square

Total Error 3 0.000212 0.000070786

Degrees
of Parameter Standard T for HO:

Parameter Freedom Estimate Error Parameter=0 Prob > IT

INTERCEPT 1 67.033701 0.007201 9308.9 0.0000
ALPHAL 1 -0.033430 0.003348 -9.985 0.0021
RATIO 1 -0.006629 0.003348 -1.980 0.1421
ALPHAL*ALPHAL 1 0.079230 0.005135 15.430 0.0006
RATIO*ALPHAL 1 0.039875 0.004207 9.479 0.0025
RATIO*RATIO 1 0.000977 0.005135 0.190 0.8613

The SAS System 10
17:11 Thursday, October 26, 1995

Degrees
of Sum of

Factor Freedom Squares Mean Square F-Ratio Prob > F

ALPHAL 3 0.039926 0.013309 188.0 0.0007
RATIO 3 0.006651 0.002217 31.318 0.0092

The SAS System 11
17:11 Thursday, October 26, 1995

Canonical Analysis of Response Surface

Critical
Factor Value
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ALPHAL 0.155432
RATIO 0.220709

Predicted value at stationary point 67.030371

Eigenvectors
Eigenvalues ALPHAL RATIO

0.084017 0.972366 0.233460

-0.003810 -0.233460 0.972366

Stationary point is a saddle point.
The SAS System 12

17:11 Thursday, October 26, 1995

Estimated Ridge of Minimum Response for Variable Y

Estimated Standard Factor Values

Radius Response Error ALPHAL RATIO

0 67.040977 0.007176 -0.207000 0.207000
0.100000 67.035841 0.007196 -0.110072 0.231596
0.200000 67.032385 0.007149 -0.013603 0.257968

0.300000 67.030605 0.007027 0.078622 0.298760

0.400000 67.030087 0.006669 0.068286 0.497203
0.500000 67.029660 0.006317 0.034885 0.644598
0.600000 67.029172 0.005996 0.006015 0.767914
0.700000 67.028613 0.005734 -0.020919 0.881814
0.800000 67.027981 0.005577 -0.046816 0.990799

0.900000 67.027274 0.005583 -0.072079 1.096829
1.000000 67.026492 0.005804 -0.096925 1.200923
1.100000 67.025634 0.006271 -0.121479 1.303670
1.200000 67.024701 0.006988 -0.145820 1.405439

1.300000 67.023692 0.007937 -0.170000 1.506473
1.400000 67.022607 0.009094 -0.194056 1.606940

1.500000 67.021446 0.010434 -0.218015 1.706960

The SAS System 13
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17:11 Thursday, October 26, 1995

Estimated Standard Factor Values
Radius Response Error ALPHAL RATIO

1.600000 67.020209 0.011936 -0.241894 1.806619
1.700000 67.018897 0.013586 -0.265709 1.905986
1.800000 67.017508 0.015372 -0.289471 2.005110
1.900000 67.016043 0.017287 -0.313188 2.104030
2.000000 67.014501 0.019323 -0.336868 2.202779
2.100000 67.012884 0.021477 -0.360515 2.301381
2.200000 67.011191 0.023745 -0.384134 2.399857
2.300000 67.009421 0.026125 -0.407729 2.498224
2.400000. 67.007576 0.028614 -0.431304 2.596495
2.500000 67.005654 0.031212 -0.454860 2.694683
2.600000 67.003656 0.033916 -0.478399 2.792796
2.700000 67.001582 0.036727 -0.501924 2.890844
2.800000 66.999431 0.039643 -0.525436 2.988834

2.900000 66.997205 0.042664 -0.548937 3.086771
3.000000 66.994902 0.045790 -0.572427 3.184661
3.100000 66.992523 0.049019 -0.595908 3.282508
3.200000 66.990068 0.052351 -0.619380 3.380317
3.300000 66.987537 0.055787 -0.642845 3.478091
3.400000 66.984929 0.059326 -0.666303 3.575834

The SAS System 14

17:11 Thursday, October 26, 1995

Estimated Standard Factor Values

Radius Response Error ALPHAL RATIO

3.500000 66.982246 0.062968 -0.689754 3.673547
3.600000 66.979486 0.066712 -0.713200 3.771234
3.700000 66.976650 0.070559 -0.736640 3.868896
3.800000 66.973738 0.074508 -0.760075 3.966536
3.900000 66.970750 0.078559 -0.783505 4.064155
4.000000 66.967685 0.082713 -0.806931 4.161754
4.100000 66.964544 0.086968 -0.830354 4.259336
4.200000 66.961327 0.091326 -0.853772 4.356902
4.300000 66.958034 0.095785 -0.877188 4.454452
4.400000 66.954665 0.100346 -0.900600 4.551988
4.500000 66.951219 0.105009 -0.924009 4.649510
4.600000 66.947698 0.109774 -0.947415 4.747020
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4.700000 66.944100 0.114641 -0.970819 4.844519
4.800000 66.940425 0.119609 -0.994221 4.942006
4.900000 66.936675 0.124679 -1.017620 5.039483
5.000000 66.932849 0.129851 -1.041017 5.136951
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Appendix D. FORTRAN
D. 1 Root Mean Squared Error Criterion Program

program eval

* this program evaluates the PIM'S error criterion from
* a given run of Bioplume. It reads the actual

* final contaminant concentrations and heads from the files
* water991.final and snap5.final and compares the values
* to the predicted final values in the files heads.pre
* and conc.pre. Note that i=column(l-20) and j=row (1-30)

integer i,j,junk
real predhead(30,20),predbenz(30,20),acthead(30,20),

1 actbenz (30,20) ,sumheads, sumtrans
open (unit=1,file='wtrfinal.bio' ,status='old' ,access=
1 'sequential' ,form=' formatted')

open(unit=2,file='snap5.bio' ,status='old' ,access=
1 'sequential' ,form=' formatted')
open (unit=3,file='HEADS.BIO' ,access='sequential',
1 form=' formatted')
open(unit=4,file='HPLUME.BIO' ,access='sequential',
1 form=' formatted')
sumheads=0

sumtrans=0
junk=0

* Fill the arrays up with zeros

do 100 i=1,20

do 200 j=1,30
predhead(j ,i)=0.0
predbenz(j ,i)=0.0

acthead(I,i)=0.0
actbenz(j ,i)=0.0

200. continue

100 continue

* Read the actual heads and concentrations into arrays

300 do 400 j=1,30
read (l,*) (acthead(j,i),i=1,20)
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read (2,*) (actbenz(j,i),i=1,20)
400 continue

****** * * ** * * *

Read the predicted heads and concentrations into arrays

500 do 550 j=1,30
read (unit=3,fmt=*,err=600) (predhead(j,i),i=l,20)

550 continue
goto 500

600 continue
read (unit=4,fmt=*,err=675) junk
do 650 j=l,30

read (4,*) (predbenz(j,i),i=I,20)
650 continue

goto 600

* Calculate the RMS error criterion and print results

675 do 700 i=1,20

do 800 j=1,30
sumheads=sumheads+(acthead(j,i)-predhead(j,i))**2
sumtrans=sumtrans+(actbenz(j,i)-predbenz(j,i))**2

800 continue

700 continue
RMSfow=(sumheads/600)**0.5
RMStrans=(sumtrans/600)**0.5

* print *, 'print out the predbenz array (should be all zeros):'
* print *,predbenz
* print *,'print out the actbenz array:'

* do 1000 i=1,20
* do 2000 j=1,30
* print *,'actbenz(row=',j,',col=',i,')=I,actbenz(j,i)

2000 continue
1000 continue
* print *,Isumheads=',sumheads

* print *,Isumtrans=',sumtrans
* do 3000 j=1,30
* do 3100 i=1,20

* print *,acthead(j,i),I vs ',predhead(j,i)

3100 continue

3000 continue

do 4000 j=1,30
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* do 4100 i=1,20
* print *,actbenz(j,i),I vs ',predbenz(ji)

4100 continue
4000 continue

print *, 'RMSflow=' ,RMSflow
print *,'RMStrans=',RMStrans

print *,'done'

end
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